A theoretical study has been performed to investigate the influence of manufacturing errors on the bearing housing of a gas lubricated journal bearing with compliant surface I in particular on the bearing load capacit...A theoretical study has been performed to investigate the influence of manufacturing errors on the bearing housing of a gas lubricated journal bearing with compliant surface I in particular on the bearing load capacity. A gas film thickness distribution is presented, in which errors o f both circumferential and axial bearing housing are considered. The influence of the errors on bearing performance is compared between rigid and compliant surface bearings. It was shown that the compliant surface bearings are less sensitive to the manufacturing errors than the rigid surface bearings. Thelefore, the cost of compliant surface bearing could be reduced by setting a larger manufacturing error tolerance.展开更多
The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Altho...The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Although porous material bearing appears larger load capacity, materials anisotropy itself and void content distortion caused in heat-treating, and machining processes add greater complexity to internal flow transfer process. Inherent compensated air bearing has the advantages of simple structure and good stability, but its load capacity and static stiffness is not worth somewhat. In this paper, based on hydrostatic lubrication theory, finite volume method is presented for taking entrance effects into account in computing pressure distribution, load capacity and mass flow rates of circular aerostatic thrust bearings. Technical analysis, numerical simulations and laboratory demonstration tests of influence of pocket diameter and pocket depth on loading capacity of aerostatic thrust bearing are carried out on simple orifice compensated air bearings with feeding pockets. The static parameters, such as air consumption and pressure distributions, are measured as a function of supply pressure and air gap height for several different orifices and pockets size. Entrance effects are described in term of typical throttling types, and the effect of pocket diameter and pocket depth on load capacity is systematically described respectively. The proposed research results uncover the causation of throttling action of the orifice compensated air bearing with feed pocket and further develop and improve the design theory of air bearing.展开更多
Hydrostatic slipper was often used in friction bearing design, allowing improvement of the latter's dynamic behavior. The influence of thermal effect on hydrostatic slipper bearing capacity of axial piston pump wa...Hydrostatic slipper was often used in friction bearing design, allowing improvement of the latter's dynamic behavior. The influence of thermal effect on hydrostatic slipper bearing capacity of axial piston pump was investigated. A set of lumped parameter mathematical models were developed based on energy conservation law of slipper/ swash plate pair. The results show that thermal equilibrium clearance due to solid thermal deformation periodically changes with shaft rotational angle. The slipper bearing capacity increases dramatically with decreasing thermal equilibrium clearance. In order to improve the slipper bearing capacity, length-to-diameter ratio of fixed damper varies from 3.5 to 8.75 and radius ratio of slipper varies from 1.5 to 2.0. In addition, the higher slipper thermal conductivity is useful to improve slipper bearing capability, but the thermal equilibrium clearance is not compromised.展开更多
The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip f...The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip footing upon both reinforced and unreinforced clayey slopes were presented.The objectives of this work are to:1) determine the influence of reinforcement on the bearing-capacity of the strip footings adjacent slopes,2) suggest an optimum number of reinforcement and 3) survey the effect of friction angle in clayey soils reinforced by geogrids.The investigations were carried out by varying the edge distance of the footing from slope.Also different numbers of geosynthetic layers were applied to obtaining the maximum bearing capacity and minimum settlement.To achieve the third objective,two different friction angles were used.The results show that the load?settlement behavior and ultimate bearing capacity of footing can be considerably improved by the inclusion of reinforcing layer.But using more than one layer reinforcement,the ultimate bearing capacity does not change considerably.It is also shown that for both reinforced and unreinforced slopes,the bearing capacity increases with an increase in edge distance.In addition,as the soil friction angle is increased,the efficiency of reinforcing reduces.展开更多
Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soi...Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.展开更多
An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concret...An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.展开更多
In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under st...In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.展开更多
In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Bas...In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.展开更多
Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based ...Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.展开更多
To better study the behavior of confined concrete, this paper presents the basic hypothesis of uhimate equilibrium of confined concrete and the unified yield criteria of confining material. Based on the static equilib...To better study the behavior of confined concrete, this paper presents the basic hypothesis of uhimate equilibrium of confined concrete and the unified yield criteria of confining material. Based on the static equilibrium condition and yield criteria of components, a unified bearing capacity model of confined concrete column is proposed, and a simplified calculating equation of the model is also given. The model captures the character of confined concrete column. Effects of the confinement effect ratio, the lateral confinement ratio, unconfined concrete strength and the properties of confining material on the bearing capacity of confined concrete column are carefully considered. The model may be applicable to the calculation of bearing capacity of steel-confined concrete, concrete filled steel tube and FRP-confined concrete. The predictions of the model agree well with test data.展开更多
文摘A theoretical study has been performed to investigate the influence of manufacturing errors on the bearing housing of a gas lubricated journal bearing with compliant surface I in particular on the bearing load capacity. A gas film thickness distribution is presented, in which errors o f both circumferential and axial bearing housing are considered. The influence of the errors on bearing performance is compared between rigid and compliant surface bearings. It was shown that the compliant surface bearings are less sensitive to the manufacturing errors than the rigid surface bearings. Thelefore, the cost of compliant surface bearing could be reduced by setting a larger manufacturing error tolerance.
基金supported by Basic Scientific Research Project of National Natural Science Foundation of China (Grant No. k1402040202)
文摘The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Although porous material bearing appears larger load capacity, materials anisotropy itself and void content distortion caused in heat-treating, and machining processes add greater complexity to internal flow transfer process. Inherent compensated air bearing has the advantages of simple structure and good stability, but its load capacity and static stiffness is not worth somewhat. In this paper, based on hydrostatic lubrication theory, finite volume method is presented for taking entrance effects into account in computing pressure distribution, load capacity and mass flow rates of circular aerostatic thrust bearings. Technical analysis, numerical simulations and laboratory demonstration tests of influence of pocket diameter and pocket depth on loading capacity of aerostatic thrust bearing are carried out on simple orifice compensated air bearings with feeding pockets. The static parameters, such as air consumption and pressure distributions, are measured as a function of supply pressure and air gap height for several different orifices and pockets size. Entrance effects are described in term of typical throttling types, and the effect of pocket diameter and pocket depth on load capacity is systematically described respectively. The proposed research results uncover the causation of throttling action of the orifice compensated air bearing with feed pocket and further develop and improve the design theory of air bearing.
基金Projects(51475332,51275356)supported by the National Natural Science Foundation of China
文摘Hydrostatic slipper was often used in friction bearing design, allowing improvement of the latter's dynamic behavior. The influence of thermal effect on hydrostatic slipper bearing capacity of axial piston pump was investigated. A set of lumped parameter mathematical models were developed based on energy conservation law of slipper/ swash plate pair. The results show that thermal equilibrium clearance due to solid thermal deformation periodically changes with shaft rotational angle. The slipper bearing capacity increases dramatically with decreasing thermal equilibrium clearance. In order to improve the slipper bearing capacity, length-to-diameter ratio of fixed damper varies from 3.5 to 8.75 and radius ratio of slipper varies from 1.5 to 2.0. In addition, the higher slipper thermal conductivity is useful to improve slipper bearing capability, but the thermal equilibrium clearance is not compromised.
文摘The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip footing upon both reinforced and unreinforced clayey slopes were presented.The objectives of this work are to:1) determine the influence of reinforcement on the bearing-capacity of the strip footings adjacent slopes,2) suggest an optimum number of reinforcement and 3) survey the effect of friction angle in clayey soils reinforced by geogrids.The investigations were carried out by varying the edge distance of the footing from slope.Also different numbers of geosynthetic layers were applied to obtaining the maximum bearing capacity and minimum settlement.To achieve the third objective,two different friction angles were used.The results show that the load?settlement behavior and ultimate bearing capacity of footing can be considerably improved by the inclusion of reinforcing layer.But using more than one layer reinforcement,the ultimate bearing capacity does not change considerably.It is also shown that for both reinforced and unreinforced slopes,the bearing capacity increases with an increase in edge distance.In addition,as the soil friction angle is increased,the efficiency of reinforcing reduces.
基金Project(51208071)supported by the National Natural Science Foundation of ChinaProject(2010CB732106)supported by the National Basic Research Program of China
文摘Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.
文摘An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.
基金Project(51175424)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by‘111’Program of ChinaProject(JC20110257)supported by the Basic Research Foundation of Northwestern Polytechnical University,China
文摘In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.
基金Project(50908084)supported by the National Natural Science Foundation of ChinaProject(200815)supported by the Transportation Science and Technology Program of Hunan Province,ChinaProject(531107040620)supported by the Growth Plan for Young Teachers of Hunan University,China
文摘In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.
基金Project(51775059)supported by the National Natural Science Foundation of ChinaProject(2017YFB1300700)supported by the National Key Research&Development Program of China。
文摘Taking the raceway roundness error into account,mechanical characteristics of cross roller bearings(CRBs)were investigated.A static analysis model of CRBs considering the raceway roundness error was established.Based on this model,the rotational accuracy and load distribution of CRBs under constraints of geometry and external loads were derived.The fatigue life of CRBs with roundness error was calculated by applying Palmgren-Miner linear cumulative damage theory.The influence of inner and outer raceway roundness error on the performance of the CRBs,such as rotational accuracy,load distribution,and fatigue life,was studied through the analysis of examples.The results indicate that the influence of roundness error on the rotating inner raceway is more significant than that of roundness error on the nonrotating outer raceway.The roundness error on the rotating inner raceway always degrades the performance of CRBs.However,a proper roundness error on the nonrotating outer raceway can reduce the loads acting on the rollers and thus improve the fatigue life of CRBs.The effect of the roundness error amplitude on the bearing performance is ordinal,whereas the effect of the roundness order on the bearing performance is not in order.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50538060)the Excellent Young College Teacher Foundation of Anhui Prov-ince(Grant No.2009SQRZ081)
文摘To better study the behavior of confined concrete, this paper presents the basic hypothesis of uhimate equilibrium of confined concrete and the unified yield criteria of confining material. Based on the static equilibrium condition and yield criteria of components, a unified bearing capacity model of confined concrete column is proposed, and a simplified calculating equation of the model is also given. The model captures the character of confined concrete column. Effects of the confinement effect ratio, the lateral confinement ratio, unconfined concrete strength and the properties of confining material on the bearing capacity of confined concrete column are carefully considered. The model may be applicable to the calculation of bearing capacity of steel-confined concrete, concrete filled steel tube and FRP-confined concrete. The predictions of the model agree well with test data.