The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surfa...The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surface of AZ91D magnesium alloy. The microstructure of the layer was characterized by scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy(EDS).The phase constituent of these alloys was identified by X-ray diffractometry(XRD).The analysis results reveal that a zinc-based alloy layer with a thickness of 700μm can form on the surface of AZ91 alloy matrix.The layer is composed of Mg7Zn3,MgZn and a small amount of α-Mg solid solution.The results indicate that the corrosion-resistance of the specimen with a zinc-based alloy layer is much better than that of the specimen without the layer after being immersed in 5%NaCl solution for 240 h, and the layer is more protective for the AZ91 alloy.展开更多
Most fault-block reservoirs in Xinmu oilfield belong to heterogeneous sandstone in characters which has low permeability, and reservoir pollution is a common phenomenon in this area. Acidizing deplugging in oil wells ...Most fault-block reservoirs in Xinmu oilfield belong to heterogeneous sandstone in characters which has low permeability, and reservoir pollution is a common phenomenon in this area. Acidizing deplugging in oil wells has become one of the major measures to improve production efficiency in the field. A compound deplug- ging technology in high efficiency low corrosion is developed for this kind of low permeability sandstone reser- voir. On the basis of profoundly understanding of the reservoir's physical properties and sensitivity, along with comprehensive analysis of the cause for jams in oil wells, a series of experiments are carried out in order to in- vestigate the dissolution reaction among samples and deplugging inhibitor, sample dissolving speed, formation fluid compatibility, reduction of secondary pollution, etc. Considered reservoir condition in nearby wells the op- timized compositional deplugging liquid formula is selected for this reservoir. It is featured by reducing the de- plugging reaction speed, extending solution for processing radius, preventing secondary damage in dissolution processing, and removing plug pollution effectively. To implement this high efficiency low corrosion deplugging measure based on reservoir condition in the borehole and nearby wells, a relatively better result of deplugging and production increasing is achieved, which enriches the measures to increase production in Xinmu oilfield, and this method can be applied to other similar oiffields for the purpose of maintaining the crude oil production and providing assistant for increasing the production significantly.展开更多
Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresea...Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.展开更多
In recent years,many studies have begun to explore the role of information and communication technology(ICT)in promoting clean government,pointing out that it will make government more honest.However,existing research...In recent years,many studies have begun to explore the role of information and communication technology(ICT)in promoting clean government,pointing out that it will make government more honest.However,existing research pays more attention to the correlation between the two factors,and few studies analyze in depth and in detail what the key ICT mechanism is that promotes the construction of clean government.Our case study of two innovative local clean government reforms in China has found that the key mechanism is improving the availability of information.Specifically,the reforms included two interrelated mechanisms:reducing the information asymmetry between vertical levels of government and bridging information barriers between government departments at the horizontal level.展开更多
文摘The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surface of AZ91D magnesium alloy. The microstructure of the layer was characterized by scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy(EDS).The phase constituent of these alloys was identified by X-ray diffractometry(XRD).The analysis results reveal that a zinc-based alloy layer with a thickness of 700μm can form on the surface of AZ91 alloy matrix.The layer is composed of Mg7Zn3,MgZn and a small amount of α-Mg solid solution.The results indicate that the corrosion-resistance of the specimen with a zinc-based alloy layer is much better than that of the specimen without the layer after being immersed in 5%NaCl solution for 240 h, and the layer is more protective for the AZ91 alloy.
文摘Most fault-block reservoirs in Xinmu oilfield belong to heterogeneous sandstone in characters which has low permeability, and reservoir pollution is a common phenomenon in this area. Acidizing deplugging in oil wells has become one of the major measures to improve production efficiency in the field. A compound deplug- ging technology in high efficiency low corrosion is developed for this kind of low permeability sandstone reser- voir. On the basis of profoundly understanding of the reservoir's physical properties and sensitivity, along with comprehensive analysis of the cause for jams in oil wells, a series of experiments are carried out in order to in- vestigate the dissolution reaction among samples and deplugging inhibitor, sample dissolving speed, formation fluid compatibility, reduction of secondary pollution, etc. Considered reservoir condition in nearby wells the op- timized compositional deplugging liquid formula is selected for this reservoir. It is featured by reducing the de- plugging reaction speed, extending solution for processing radius, preventing secondary damage in dissolution processing, and removing plug pollution effectively. To implement this high efficiency low corrosion deplugging measure based on reservoir condition in the borehole and nearby wells, a relatively better result of deplugging and production increasing is achieved, which enriches the measures to increase production in Xinmu oilfield, and this method can be applied to other similar oiffields for the purpose of maintaining the crude oil production and providing assistant for increasing the production significantly.
基金Projects(52178371,52108355,52178321)supported by the National Natural Science Foundation of ChinaProject(202305)supported by the Research Project of Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,China。
文摘Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.
文摘In recent years,many studies have begun to explore the role of information and communication technology(ICT)in promoting clean government,pointing out that it will make government more honest.However,existing research pays more attention to the correlation between the two factors,and few studies analyze in depth and in detail what the key ICT mechanism is that promotes the construction of clean government.Our case study of two innovative local clean government reforms in China has found that the key mechanism is improving the availability of information.Specifically,the reforms included two interrelated mechanisms:reducing the information asymmetry between vertical levels of government and bridging information barriers between government departments at the horizontal level.