For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock disp...For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock displacement, plastic zone and stress distribution in rectangular, circle arch and arch wall sections, respectively. Based on the mining depth and thickness of the coal seam, roadway support technology solutions with different buried depth and thickness of coal seam are proposed. Support schemes are amended and optimized in time through monitoring data of the deformation of roadway, roof separation, l-beam bracket, bolt and anchor cable force to ensure the long-term stability and security of the roadway surrounding rock and support structure. The monitoring results show that mine roadway support schemes for different buried depth and section can be adapted to the characteristics of ground pressure and deformation of the surrounding rock in different depth well, effectively control the roadway surrounding rock deformation and the floor heave and guarantee the safety of construction and basic stability of surrounding rock and support structure.展开更多
Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same...Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same stress state, different normal stresses on element boundaries were used. In order to investigate the influence of different factors on supporting pressures, the failure mechanism was established. The solution of supporting pressure, with different parameters, was obtained by optimization theory. The corresponding failure mechanism and numerical results were presented. In comparison with the results using the single tangential technique method, it is found that the proposed method is effective, and the good agreement shows that the present solution of supporting pressure is reliable.展开更多
基金Financial support for this work, provided by the Major Program of the National Natural Science Foundation of China (Nos. 51174196 and 51204168)the Program for New Century Excellent Talents in University by Ministry of Education of China (No. NCET-07-0519)
文摘For the engineering geology conditions of bad mine roadway roof and floor lithology in extremely weak cemented strata, the best section shape of the roadway is determined from the study of tunnel surrounding rock displacement, plastic zone and stress distribution in rectangular, circle arch and arch wall sections, respectively. Based on the mining depth and thickness of the coal seam, roadway support technology solutions with different buried depth and thickness of coal seam are proposed. Support schemes are amended and optimized in time through monitoring data of the deformation of roadway, roof separation, l-beam bracket, bolt and anchor cable force to ensure the long-term stability and security of the roadway surrounding rock and support structure. The monitoring results show that mine roadway support schemes for different buried depth and section can be adapted to the characteristics of ground pressure and deformation of the surrounding rock in different depth well, effectively control the roadway surrounding rock deformation and the floor heave and guarantee the safety of construction and basic stability of surrounding rock and support structure.
基金Projects(2013CB0360042011CB013800)supported by the National Basic Research Program of China+1 种基金Project(51178468)supported by the National Natural Science Foundation of ChinaProject(2011G013-B)supported by the Science and Technology Development of Railways Department in China
文摘Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same stress state, different normal stresses on element boundaries were used. In order to investigate the influence of different factors on supporting pressures, the failure mechanism was established. The solution of supporting pressure, with different parameters, was obtained by optimization theory. The corresponding failure mechanism and numerical results were presented. In comparison with the results using the single tangential technique method, it is found that the proposed method is effective, and the good agreement shows that the present solution of supporting pressure is reliable.