Since 2009, Chinese nonferrous metals industry has been carried out industry consolidation with strong support by the central government. This work examined technical efficiency of Chinese nonferrous metals firms and ...Since 2009, Chinese nonferrous metals industry has been carried out industry consolidation with strong support by the central government. This work examined technical efficiency of Chinese nonferrous metals firms and its change during the period of 2007 and 2011. Based on financial data from nonferrous metals listed companies, technical efficiency of nonferrous metal minerals mining firms and nonferrous metal smelting, pressing and processing firms was estimated respectively using the data envelopment analysis (DEA) method. It was found that, in both sectors, number of pure technical and scale inefficient firms dominated over efficient ones. Overall, their technical and scale efficiency tended to be very low after 2009. In particular, efficiency scores of nonferrous metal smelting, pressing and processing firms fluctuated greatly during the research period. And a limited number of large leading firms were able to maintain 100% efficiency score in the industry, while efficiency of most of other leading firms has declined since 2009.展开更多
Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the pro...Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.展开更多
The shape and thickness of the dome were investigated with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. The thickness of the liners and reinforcing materials was ...The shape and thickness of the dome were investigated with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. The thickness of the liners and reinforcing materials was optimized based on the requirement of the cylinder and dome parts. In addition, the shape of the dome, which is most suitable for type lI CNG storage vessels, was proposed by a process of review and analysis of various existing shapes, and the minimum thickness was established in this sequence: metal liners, composite materials and dome parts. Therefore, the new proposed shape products give a mass reduction of 4.8 kg(5.1%)展开更多
There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in orde...There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.展开更多
基金Project(70921001)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0799)supported by Program for New Century Excellent Talents in University,ChinaProjects(11YJA790158)supported by Humanities and Social Sciences Planning Fund by Chinese Ministry of Education
文摘Since 2009, Chinese nonferrous metals industry has been carried out industry consolidation with strong support by the central government. This work examined technical efficiency of Chinese nonferrous metals firms and its change during the period of 2007 and 2011. Based on financial data from nonferrous metals listed companies, technical efficiency of nonferrous metal minerals mining firms and nonferrous metal smelting, pressing and processing firms was estimated respectively using the data envelopment analysis (DEA) method. It was found that, in both sectors, number of pure technical and scale inefficient firms dominated over efficient ones. Overall, their technical and scale efficiency tended to be very low after 2009. In particular, efficiency scores of nonferrous metal smelting, pressing and processing firms fluctuated greatly during the research period. And a limited number of large leading firms were able to maintain 100% efficiency score in the industry, while efficiency of most of other leading firms has declined since 2009.
基金The University of Ilorin,Nigeria financially supported this research through scholarship grant from Tertiary Education Trust Fund
文摘Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.
基金Project(2010-0008-277) supported by NCRC (National Core Research Center) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technologysupported for two years by Pusan National University Research Grant
文摘The shape and thickness of the dome were investigated with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. The thickness of the liners and reinforcing materials was optimized based on the requirement of the cylinder and dome parts. In addition, the shape of the dome, which is most suitable for type lI CNG storage vessels, was proposed by a process of review and analysis of various existing shapes, and the minimum thickness was established in this sequence: metal liners, composite materials and dome parts. Therefore, the new proposed shape products give a mass reduction of 4.8 kg(5.1%)
文摘There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.