Objective To assess the clinical values of computed tomographic colonography (CTC) in diagnosis of colonic polyps. Methods Forty-two patients who were clinically suspicious of colonic polyps or underwent colonic po...Objective To assess the clinical values of computed tomographic colonography (CTC) in diagnosis of colonic polyps. Methods Forty-two patients who were clinically suspicious of colonic polyps or underwent colonic polyps screening received examinations with both CTC and conventional colonoscopy. Sixteen- or 64-slice spiral computed tomography and professional imaging processing techniques were used for evaluation. Per-polyp and per-patient results were analyzed. Those by per-polyp were subsequently divided into ≥10 mm group, 5-10 mm group, and ≤5 mm group. Sensitivity, positive predictive value (PPV), specificity, negative predictive value (NPV), and accuracy were calculated using statistical method for diagnostic studies, with conventional colonoscopy as a gold standard. Results Ninety and 61 polyps were found by CTC and conventional colonoscopy, respectively. The per-polyp sensitivity/PPV were 80.3%/55.6% in total, and 100%/92.9%, 93.8%/65.2%, and 68.8%/ 41.5% in the ≥10 mm group, 5-10 mm group, and ≤5 turn group, respectively. The per-patient sensitivity, PPV, specificity, NPV, and accuracy were 97.1%, 89.5%, 42.9%, 75.0%, and 88.1%, respectively. Conclusion CTC can clearly reveal the morphology of colonic polyps and be used as a routine monitoring method for the clinical diagnosis of polyps.展开更多
Microfluidic technology provides opportunities to create in vitro models with physiological microenvironment for cell study.Introducing the identified key aspects,including tissue-tissue interfaces,spatiotemporal chem...Microfluidic technology provides opportunities to create in vitro models with physiological microenvironment for cell study.Introducing the identified key aspects,including tissue-tissue interfaces,spatiotemporal chemical gradients,and dynamic mechanical forces,of living organs into the microfluidic system,"organs-on-chips"display an unprecedented application potential in a lot of biological fields such as fundamental physiological and pathophysiological research,drug efficacy and toxicity testing,and clinical diagnosis.Here,we review the recent development of organs-on-chips and briefly discuss their future challenges.展开更多
文摘Objective To assess the clinical values of computed tomographic colonography (CTC) in diagnosis of colonic polyps. Methods Forty-two patients who were clinically suspicious of colonic polyps or underwent colonic polyps screening received examinations with both CTC and conventional colonoscopy. Sixteen- or 64-slice spiral computed tomography and professional imaging processing techniques were used for evaluation. Per-polyp and per-patient results were analyzed. Those by per-polyp were subsequently divided into ≥10 mm group, 5-10 mm group, and ≤5 mm group. Sensitivity, positive predictive value (PPV), specificity, negative predictive value (NPV), and accuracy were calculated using statistical method for diagnostic studies, with conventional colonoscopy as a gold standard. Results Ninety and 61 polyps were found by CTC and conventional colonoscopy, respectively. The per-polyp sensitivity/PPV were 80.3%/55.6% in total, and 100%/92.9%, 93.8%/65.2%, and 68.8%/ 41.5% in the ≥10 mm group, 5-10 mm group, and ≤5 turn group, respectively. The per-patient sensitivity, PPV, specificity, NPV, and accuracy were 97.1%, 89.5%, 42.9%, 75.0%, and 88.1%, respectively. Conclusion CTC can clearly reveal the morphology of colonic polyps and be used as a routine monitoring method for the clinical diagnosis of polyps.
基金supported by the Ministry of Science and Technology(2012AA022703,2012AA030608,2011CB933201 and 2009CB930001)the National Natural Science Foundation of China(31170905,21025520,51073045,31170905,GZ 614 and 91213305)+1 种基金the Chinese Academy of Sciences(KJCX2-YW-M15)the State Major Scientific and Technological Project of China(2013ZX09507005)
文摘Microfluidic technology provides opportunities to create in vitro models with physiological microenvironment for cell study.Introducing the identified key aspects,including tissue-tissue interfaces,spatiotemporal chemical gradients,and dynamic mechanical forces,of living organs into the microfluidic system,"organs-on-chips"display an unprecedented application potential in a lot of biological fields such as fundamental physiological and pathophysiological research,drug efficacy and toxicity testing,and clinical diagnosis.Here,we review the recent development of organs-on-chips and briefly discuss their future challenges.