Forty-nine microbial strains were used to screen their ability for the microbiological transforma-tion of ginsenoside Rg1. Aspergillus niger (3.1858) and Absidia coerulea (3.3538) were found to convert ginsenoside Rg1...Forty-nine microbial strains were used to screen their ability for the microbiological transforma-tion of ginsenoside Rg1. Aspergillus niger (3.1858) and Absidia coerulea (3.3538) were found to convert ginsenoside Rg1 efficiently to less polar metabolites. Preparative scale transformation with both fungi Absidia coerulea (3.3538) and Aspergillus niger (3.1858) have resulted in the production of one same metabolite (MT1). Its structure was char-acterized as 6-O-b-D-glucopyranosyl-20(S)-protopanaxatriol (Ginsenoside Rh1) on the basis of its TOF-MS and 1H, 13C NMR spectral data. The biotransformation kinetic curves for Ginsenoside Rg1 and MT1 were reported for the first time, and the biotransformation pathway was proposed.展开更多
文摘Forty-nine microbial strains were used to screen their ability for the microbiological transforma-tion of ginsenoside Rg1. Aspergillus niger (3.1858) and Absidia coerulea (3.3538) were found to convert ginsenoside Rg1 efficiently to less polar metabolites. Preparative scale transformation with both fungi Absidia coerulea (3.3538) and Aspergillus niger (3.1858) have resulted in the production of one same metabolite (MT1). Its structure was char-acterized as 6-O-b-D-glucopyranosyl-20(S)-protopanaxatriol (Ginsenoside Rh1) on the basis of its TOF-MS and 1H, 13C NMR spectral data. The biotransformation kinetic curves for Ginsenoside Rg1 and MT1 were reported for the first time, and the biotransformation pathway was proposed.