The world is marching into a new development period when the digital technology,physical technology,and biological technology have achieved an unprecedented development respectively in their own fields,and at the same...The world is marching into a new development period when the digital technology,physical technology,and biological technology have achieved an unprecedented development respectively in their own fields,and at the same time their applications are converging greatly.These are the three major technological drivers for the Fourth Industrial Revolution.This paper discusses the specific technology niches of each kind technological driver behind the Fourth Industrial Revolution,and then evaluates impacts of the Fourth Industrial Revolution on global industrial,economic,and social development.At last this paper proposes possible measures and policies for both firms and governments to cope with the changes brought by the Fourth Industrial Revolution.展开更多
The main purpose of this study is to verify the influence of accumulated Intellectual Capital (IC) on the organizational performance of biotechnology companies listed on the Taiwan Stock Exchange, with brand equity ...The main purpose of this study is to verify the influence of accumulated Intellectual Capital (IC) on the organizational performance of biotechnology companies listed on the Taiwan Stock Exchange, with brand equity being the moderating variable. Financial and marketing section chiefs or employees of higher levels at Taiwan listed biotechnology companies were interviewed, with the companies' ROE (return on equity) data obtained from the Taiwan Economic Journal (TEJ) database. While convenience sampling was used to yield knowledge from the population, the linear Structural Equation Modeling (SEM) was adopted to verify the goodness-of-fit effects among the overall model, structural model, and measurement model. Findings from this study show that, at Taiwan listed biotechnology companies, IC accumulation and increased brand equity have significantly interactive influences on organizational performance.展开更多
Biodiesel (fatty acid methyl ester) has been identified as a non-toxic biodegradable alternative fuel that is obtained from renewable sources. Over the last decade, there has been increasing interest in producing bi...Biodiesel (fatty acid methyl ester) has been identified as a non-toxic biodegradable alternative fuel that is obtained from renewable sources. Over the last decade, there has been increasing interest in producing biodiesel from conventional sources such as soybean, canola, sunflower, and coconut oils. Current efforts are directed towards the development of new non-edible resources. Among these Jatropha Curcas comes at the forefront. In Egypt, Jatropha Curcas has grown successfully using primary treated wastewater. Also, extensive R&D efforts identified the optimum conditions for the various processing stages namely crushing, extraction, transesterification and purification. Based on the research findings, the techno-economic appraisal of biodiesel production from Jatropha Curcas is conducted. Two nominal capacities namely 8,000 and 50,000 metric tons/yr have been proposed. Several scenarios have been formulated to take into consideration varying productivity (3.4 to 5.8 ton fruits per 4,000 m^2 (acre)) and varying recovery rates of oil from seeds. Economic indicators including capital and production costs for the various processing stages and revenues according to current prices of oil and cake have been obtained. The price of biodiesel that provides a simple rate of return (SRR) on investments of 10% was in the range of $0.3-0.7/liter for the different assumed scenarios which is lower than the prevailing price of biodiesel (about $1/liter) in the US. Thus, in view of experimental results and economic assumptions, there are positive prospects for the production of biodiesel from Jatropha Curcas under Egyptian conditions.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41671120,41401125)
文摘The world is marching into a new development period when the digital technology,physical technology,and biological technology have achieved an unprecedented development respectively in their own fields,and at the same time their applications are converging greatly.These are the three major technological drivers for the Fourth Industrial Revolution.This paper discusses the specific technology niches of each kind technological driver behind the Fourth Industrial Revolution,and then evaluates impacts of the Fourth Industrial Revolution on global industrial,economic,and social development.At last this paper proposes possible measures and policies for both firms and governments to cope with the changes brought by the Fourth Industrial Revolution.
文摘The main purpose of this study is to verify the influence of accumulated Intellectual Capital (IC) on the organizational performance of biotechnology companies listed on the Taiwan Stock Exchange, with brand equity being the moderating variable. Financial and marketing section chiefs or employees of higher levels at Taiwan listed biotechnology companies were interviewed, with the companies' ROE (return on equity) data obtained from the Taiwan Economic Journal (TEJ) database. While convenience sampling was used to yield knowledge from the population, the linear Structural Equation Modeling (SEM) was adopted to verify the goodness-of-fit effects among the overall model, structural model, and measurement model. Findings from this study show that, at Taiwan listed biotechnology companies, IC accumulation and increased brand equity have significantly interactive influences on organizational performance.
文摘Biodiesel (fatty acid methyl ester) has been identified as a non-toxic biodegradable alternative fuel that is obtained from renewable sources. Over the last decade, there has been increasing interest in producing biodiesel from conventional sources such as soybean, canola, sunflower, and coconut oils. Current efforts are directed towards the development of new non-edible resources. Among these Jatropha Curcas comes at the forefront. In Egypt, Jatropha Curcas has grown successfully using primary treated wastewater. Also, extensive R&D efforts identified the optimum conditions for the various processing stages namely crushing, extraction, transesterification and purification. Based on the research findings, the techno-economic appraisal of biodiesel production from Jatropha Curcas is conducted. Two nominal capacities namely 8,000 and 50,000 metric tons/yr have been proposed. Several scenarios have been formulated to take into consideration varying productivity (3.4 to 5.8 ton fruits per 4,000 m^2 (acre)) and varying recovery rates of oil from seeds. Economic indicators including capital and production costs for the various processing stages and revenues according to current prices of oil and cake have been obtained. The price of biodiesel that provides a simple rate of return (SRR) on investments of 10% was in the range of $0.3-0.7/liter for the different assumed scenarios which is lower than the prevailing price of biodiesel (about $1/liter) in the US. Thus, in view of experimental results and economic assumptions, there are positive prospects for the production of biodiesel from Jatropha Curcas under Egyptian conditions.