Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on tr...Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on traditional industry unpredictable. 3D printing will propel the revolution of fabrication modes forward, and bring in a new era for customized fabrication by realizing the five "any"s: use of almost any material to fabricate any part, in any quantity and any location, for any industrial field. Innovations in material, design, and fabrication processes will be inspired by the merging of 3D-printing technology and processes with traditional manufacturing processes. Finally, 3D printing will become as valuable for manufacturing industries as equivalent and subtractive manufacturing processes.展开更多
Progressive rendering, for example Monte Carlo rendering of 360° content for virtual reality headsets, is a time-consuming task. If the 3D artist notices an error while previewing the rendering, they must return ...Progressive rendering, for example Monte Carlo rendering of 360° content for virtual reality headsets, is a time-consuming task. If the 3D artist notices an error while previewing the rendering, they must return to editing mode, make the required changes, and restart rendering. We propose the use of eye-tracking-based optimization to significantly speed up previewing of the artist's points of interest. The speed of the preview is further improved by sampling with a distribution that closely follows the experimentally measured visual acuity of the human eye, unlike the piecewise linear models used in previous work. In a comprehensive user study, the perceived eonvergence of our proposed method was 10 times faster than that of a conventional preview, and often appeared to be instantaneous. In addition, the participants rated the method to have only marginally more artifacts in areas where it had to start rendering from scratch, compared to conventional rendering methods that had already generated image content in those areas.展开更多
文摘Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on traditional industry unpredictable. 3D printing will propel the revolution of fabrication modes forward, and bring in a new era for customized fabrication by realizing the five "any"s: use of almost any material to fabricate any part, in any quantity and any location, for any industrial field. Innovations in material, design, and fabrication processes will be inspired by the merging of 3D-printing technology and processes with traditional manufacturing processes. Finally, 3D printing will become as valuable for manufacturing industries as equivalent and subtractive manufacturing processes.
基金supported by the TUT Graduate SchoolNokia Foundation+3 种基金Emil Aaltonen FoundationFinnish Foundation for Technology Promotion,Academy of Finland(funding decision 297548)Finnish Funding Agency for Technology and Innovation(funding decision 40142/14,FiDiPro-StreamPro)ARTEMIS joint undertaking under grant agreement no 621439(ALMARVI)
文摘Progressive rendering, for example Monte Carlo rendering of 360° content for virtual reality headsets, is a time-consuming task. If the 3D artist notices an error while previewing the rendering, they must return to editing mode, make the required changes, and restart rendering. We propose the use of eye-tracking-based optimization to significantly speed up previewing of the artist's points of interest. The speed of the preview is further improved by sampling with a distribution that closely follows the experimentally measured visual acuity of the human eye, unlike the piecewise linear models used in previous work. In a comprehensive user study, the perceived eonvergence of our proposed method was 10 times faster than that of a conventional preview, and often appeared to be instantaneous. In addition, the participants rated the method to have only marginally more artifacts in areas where it had to start rendering from scratch, compared to conventional rendering methods that had already generated image content in those areas.