Learned association between context and drug abuse is essential for the drug conditioned place preference (CPP), which is an animal model widely used to measure drug reward. Synaptic plasticity, in the form of long-...Learned association between context and drug abuse is essential for the drug conditioned place preference (CPP), which is an animal model widely used to measure drug reward. Synaptic plasticity, in the form of long-term potentiation (LTP) and depression (LTD), is regarded as a proposed cellular substrate of learning and memory. However, the exact role of LTP/LTD in addiction is not known yet. Therefore, by bioinformatics we designed peptides aiming to interfere with LTP and LTD respectively, to study their individual role in the expression of morphine CPP. We found that the interfering peptide Pep-A2 can specifically block hippocampal LTP in CA1 region, whereas Pep-A3 can block LTD in this region. Treatment of either of their cell penetrating forms (Tat-A2 or Tat-A3) before test can block the expression of Morphine CPP in mice. These results suggested that both LTP and LTD are required in the drug-associated learning and memory.展开更多
When using traditional drive circuits,the enhancement-mode GaN(eGaN)HEMT will be affected by high switching speed characteristics and parasitic parameters leading to worse crosstalk problems.Currently,the existing cro...When using traditional drive circuits,the enhancement-mode GaN(eGaN)HEMT will be affected by high switching speed characteristics and parasitic parameters leading to worse crosstalk problems.Currently,the existing crosstalk suppression drive circuits often have the disadvantages of increased switching loss,control complexity,and overall electromagnetic interference(EMI).Therefore,this paper combines the driving loop impedance control and the active Miller clamp method to propose an improved active Miller clamp drive circuit.First,the crosstalk mechanism is analyzed,and the crosstalk voltage model is established.Through the crosstalk voltage evaluation platform,the influencing factors are evaluated experimentally.Then,the operating principle of the improved active Miller clamp drive circuit is discussed,and the optimized parameter design method is given.Finally,the effect of the improved active Miller clamp method for suppressing crosstalk is experimentally verified.The crosstalk voltage was suppressed from 3.5 V and-3.5 V to 1 V and-1.3 V,respectively,by the improved circuit.展开更多
基金supported by the National Natural Science Foundation of China(3053025030623007)
文摘Learned association between context and drug abuse is essential for the drug conditioned place preference (CPP), which is an animal model widely used to measure drug reward. Synaptic plasticity, in the form of long-term potentiation (LTP) and depression (LTD), is regarded as a proposed cellular substrate of learning and memory. However, the exact role of LTP/LTD in addiction is not known yet. Therefore, by bioinformatics we designed peptides aiming to interfere with LTP and LTD respectively, to study their individual role in the expression of morphine CPP. We found that the interfering peptide Pep-A2 can specifically block hippocampal LTP in CA1 region, whereas Pep-A3 can block LTD in this region. Treatment of either of their cell penetrating forms (Tat-A2 or Tat-A3) before test can block the expression of Morphine CPP in mice. These results suggested that both LTP and LTD are required in the drug-associated learning and memory.
基金supported by the Foundation of State Key Laboratory of Wide-Bandgap Semi-conductor Power Electronic Devices(No.2019KF001)National Natural Science Foundation of China(No.51677089)。
文摘When using traditional drive circuits,the enhancement-mode GaN(eGaN)HEMT will be affected by high switching speed characteristics and parasitic parameters leading to worse crosstalk problems.Currently,the existing crosstalk suppression drive circuits often have the disadvantages of increased switching loss,control complexity,and overall electromagnetic interference(EMI).Therefore,this paper combines the driving loop impedance control and the active Miller clamp method to propose an improved active Miller clamp drive circuit.First,the crosstalk mechanism is analyzed,and the crosstalk voltage model is established.Through the crosstalk voltage evaluation platform,the influencing factors are evaluated experimentally.Then,the operating principle of the improved active Miller clamp drive circuit is discussed,and the optimized parameter design method is given.Finally,the effect of the improved active Miller clamp method for suppressing crosstalk is experimentally verified.The crosstalk voltage was suppressed from 3.5 V and-3.5 V to 1 V and-1.3 V,respectively,by the improved circuit.