The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic...The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic smooth muscle cells(SMCs) were investigated. Using experimental models of proliferation of cultured rabbit aortic SMCs induced by oxidized LDL(ox-LDL), the extent of oxidation was determined by thiobarbituric acid reactive substances(TBARS) method, MTT colorimetry and 3H-thymidine(3H-TdR) incorporation were used to observe proliferation of SMCs. It showed that SF effectively inhibited cell-mediated oxidation induced by Cu2+ in a concentration-dependent manner. At the final concentration of 40, 80, 120 gmL-1, SF could significantly inhibit 3H-TdR incorporation and cell Proliferation in a dose-dependent manner. The results indicated that SF could, in vitro protect LDL against oxidative modification and inhibit the proliferation of SMC, which might be due to its free radical scavenging capacity.展开更多
文摘The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic smooth muscle cells(SMCs) were investigated. Using experimental models of proliferation of cultured rabbit aortic SMCs induced by oxidized LDL(ox-LDL), the extent of oxidation was determined by thiobarbituric acid reactive substances(TBARS) method, MTT colorimetry and 3H-thymidine(3H-TdR) incorporation were used to observe proliferation of SMCs. It showed that SF effectively inhibited cell-mediated oxidation induced by Cu2+ in a concentration-dependent manner. At the final concentration of 40, 80, 120 gmL-1, SF could significantly inhibit 3H-TdR incorporation and cell Proliferation in a dose-dependent manner. The results indicated that SF could, in vitro protect LDL against oxidative modification and inhibit the proliferation of SMC, which might be due to its free radical scavenging capacity.