Internal model control (IMC) yields very good performance for set point tracking, but gives sluggish response for disturbance rejection problem. A two-degree-of-freedom IMC (2DOF-IMC) has been developed to overcom...Internal model control (IMC) yields very good performance for set point tracking, but gives sluggish response for disturbance rejection problem. A two-degree-of-freedom IMC (2DOF-IMC) has been developed to overcome the weakness. However, the setting of parameter becomes a complicated matter if there is an uncertainty model. The present study proposes a new tuning method for the controller. The proposed tuning method consists of three steps. Firstly, the worst case of the model uncertainty is determined. Secondly, the parameter of set point con- troller using maximum peak (Mp) criteria is specified, and finally, the parameter of the disturbance rejection con- troller using gain margin (GM) criteria is obtained. The proposed method is denoted as Mp-GM tuning method. The effectiveness of Mp-GM tuning method has evaluated and compared with IMC-controller tuning program (IMCTUNE) as bench mark. The evaluation and comparison have been done through the simulation on a number of first order plus dead time (FOPDT) and higher order processes. The FOPDT process tested includes processes with controllability ratio in the range 0.7 to 2.5. The higher processes include second order with underdarnped and third order with nonminimum phase processes. Although the two of higher order processes are considered as difficult processes, the proposed Mp-GM tuning method are able to obtain the good controller parameter even under process uncertainties.展开更多
The capability of ADRC is studied for linear time-invariant SISO minimum-phase systems with unknown orders, uncertain relative degrees, and unknown input disturbances. It is proved that ADRC can reject the unknown inp...The capability of ADRC is studied for linear time-invariant SISO minimum-phase systems with unknown orders, uncertain relative degrees, and unknown input disturbances. It is proved that ADRC can reject the unknown input disturbance and guarantee the close-loop stability for the plants with unknown but bounded relative degrees. Meanwhile, some close-loop performances can be achieved. The influence of the sensor noise is also discussed. And it is demonstrated by numerical examples that one ADRC with fixed parameters can be applied to a group of plants of different orders, relative degrees, and parameters.展开更多
基金Supported by Postgraduate Fellowship of UMP,Fundamental Research Grant Scheme of Malaysia(GRS070120)Joint Research Grant between Universiti Malaysia Pahang (UMP) and Institut Teknologi Sepuluh Nopember (ITS) Surabaya
文摘Internal model control (IMC) yields very good performance for set point tracking, but gives sluggish response for disturbance rejection problem. A two-degree-of-freedom IMC (2DOF-IMC) has been developed to overcome the weakness. However, the setting of parameter becomes a complicated matter if there is an uncertainty model. The present study proposes a new tuning method for the controller. The proposed tuning method consists of three steps. Firstly, the worst case of the model uncertainty is determined. Secondly, the parameter of set point con- troller using maximum peak (Mp) criteria is specified, and finally, the parameter of the disturbance rejection con- troller using gain margin (GM) criteria is obtained. The proposed method is denoted as Mp-GM tuning method. The effectiveness of Mp-GM tuning method has evaluated and compared with IMC-controller tuning program (IMCTUNE) as bench mark. The evaluation and comparison have been done through the simulation on a number of first order plus dead time (FOPDT) and higher order processes. The FOPDT process tested includes processes with controllability ratio in the range 0.7 to 2.5. The higher processes include second order with underdarnped and third order with nonminimum phase processes. Although the two of higher order processes are considered as difficult processes, the proposed Mp-GM tuning method are able to obtain the good controller parameter even under process uncertainties.
基金supported by Natural Science Foundation of China under Grant Nos.60821091 and 60736022
文摘The capability of ADRC is studied for linear time-invariant SISO minimum-phase systems with unknown orders, uncertain relative degrees, and unknown input disturbances. It is proved that ADRC can reject the unknown input disturbance and guarantee the close-loop stability for the plants with unknown but bounded relative degrees. Meanwhile, some close-loop performances can be achieved. The influence of the sensor noise is also discussed. And it is demonstrated by numerical examples that one ADRC with fixed parameters can be applied to a group of plants of different orders, relative degrees, and parameters.