期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
过量AgI播撒对降雨的抑制作用 被引量:1
1
作者 权建农 周嵬 +1 位作者 何晖 董鹏捷 《气象》 CSCD 北大核心 2008年第S1期118-120,310-311,共5页
奥运会开幕式当天北京市西南和东北两块降水云系不断发展加强,根据当天北京地区的风向,对可能影响鸟巢的西南云系进行了消(减)雨作业。文章分析了作业区云体和非作业区云体的发展、演变、以及降水的情况。结果显示过量AgI播撒能够对降... 奥运会开幕式当天北京市西南和东北两块降水云系不断发展加强,根据当天北京地区的风向,对可能影响鸟巢的西南云系进行了消(减)雨作业。文章分析了作业区云体和非作业区云体的发展、演变、以及降水的情况。结果显示过量AgI播撒能够对降水产生抑制作用,从而对目标区起到较好的保护作用。 展开更多
关键词 AGI 云层结构 抑制降水
下载PDF
Biophysical Regulation of Carbon Flux in Different Rainfall Regime in a Northern Tibetan Alpine Meadow 被引量:5
2
作者 CHAI Xi SHI Peili +3 位作者 ZONG Ning NIU Ben HE Yongtao ZHANG Xianzhou 《Journal of Resources and Ecology》 CSCD 2017年第1期30-41,共12页
Inter-annual variability in total precipitation can lead to significant changes in carbon flux.In this study,we used the eddy covariance(EC) technique to measure the net CO_2 ecosystem exchange(NEE) of an alpine m... Inter-annual variability in total precipitation can lead to significant changes in carbon flux.In this study,we used the eddy covariance(EC) technique to measure the net CO_2 ecosystem exchange(NEE) of an alpine meadow in the northern Tibetan Plateau.In 2005 the meadow had precipitation of 489.9 mm and in 2006 precipitation of 241.1 mm,which,respectively,represent normal and dry years as compared to the mean annual precipitation of 476 mm.The EC measured NEE was 87.70 g C m^(-2) yr^(-1) in 2006 and-2.35 g C m^(-2) yr^(-1) in 2005.Therefore,the grassland was carbon neutral to the atmosphere in the normal year,while it was a carbon source in the dry year,indicating this ecosystem will become a CO_2 source if climate warming results in more drought conditions.The drought conditions in the dry year limited gross ecosystem CO_2 exchange(GEE),leaf area index(LAI) and the duration of ecosystem carbon uptake.During the peak of growing season the maximum daily rate of NEE and Pmax and a were approximately 30%-50% of those of the normal year.GEE and NEE were strongly related to photosynthetically active radiation(PAR) on half-hourly scale,but this relationship was confounded by air temperature(Ta),soil water content(SWC) and vapor pressure deficit(VPD).The absolute values of NEE declined with higher Ta,higher VPD and lower SWC conditions.Beyond the appropriate range of PAR,high solar radiation exacerbated soil water conditions and thus reduced daytime NEE.Optimal T_a and VPD for maximum daytime NEE were 12.7℃ and 0.42 KPa respectively,and the absolute values of NEE increased with SWC.Variation in LAI explained around 77% of the change in GEE and NEE.Variations in R_e were mainly controlled by soil temperature(T_s),whereas soil water content regulated the responses of R_e to T_s. 展开更多
关键词 CO_2 flux different rainfall regime depression alpine meadow water stress Tibetan Plateau
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部