AIM:To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27Kip1 in them,and further determine whether the e...AIM:To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27Kip1 in them,and further determine whether the effects are related to the PI3K/Akt signal transduction pathway. METHODS:Gastric cancer MGC-803 cells were cultured and then treated with 50 μg/L recombinant human MIF (rhMIF) with and without a PI3K inhibitor,LY294002 (25 μmol/L). MTT assay was used to detect the prolifer-ation of MGC-803 cells. Cell cycle was detected by flow cytometry. Expression of cyclin D1 and p27Kip1 mRNA was by reverse transcription-polymerase chain reaction. Protein expression of phosphorylated Akt (p-Akt),Akt,cyclin D1 and p27Kip1 was examined by immunocyto-chemistry and Western blotting. RESULTS:rhMIF signifi cantly stimulated the prolifera-tion of MGC-803 cells and cell cycle progression from G1 phase to S phase in a concentration-and time-de-pendent manner. After the MGC-803 cells were treated with rhMIF for 24 h,the expression of cyclin D1 was signifi cantly up-regulated compared with the cells not treated with rhMIF at both mRNA and protein levels(0.97 ± 0.02 vs 0.74 ± 0.01,P = 0.002; 0.98 ± 0.05 vs 0.69 ± 0.04,P = 0.003). The p27Kip1 was down-regulated but only statistically significant at the protein level. rhMIF significantly increased the expression of p-Akt,which reached the peak at 30 min,but did not affect the expression of Akt. However,LY294002 inhibited all the effects of rhMIF.CONCLUSION:Macrophage MIF increases the proliferation of gastric cancer cells,induces the expression of cyclin D1 at the transcriptional level and inhibits the expression of p27Kip1 at the post-transcriptional level via the PI3K/Akt pathway.展开更多
In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advance...In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz-Jeghers and Lynch syn- dromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancre- atic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect onco- genes and tumor-suppressor genes within RAS, AK-I- and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.展开更多
基金Supported by Grant from Hunan Provincial Science and Technology Department (2008 FJ 3088), China
文摘AIM:To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27Kip1 in them,and further determine whether the effects are related to the PI3K/Akt signal transduction pathway. METHODS:Gastric cancer MGC-803 cells were cultured and then treated with 50 μg/L recombinant human MIF (rhMIF) with and without a PI3K inhibitor,LY294002 (25 μmol/L). MTT assay was used to detect the prolifer-ation of MGC-803 cells. Cell cycle was detected by flow cytometry. Expression of cyclin D1 and p27Kip1 mRNA was by reverse transcription-polymerase chain reaction. Protein expression of phosphorylated Akt (p-Akt),Akt,cyclin D1 and p27Kip1 was examined by immunocyto-chemistry and Western blotting. RESULTS:rhMIF signifi cantly stimulated the prolifera-tion of MGC-803 cells and cell cycle progression from G1 phase to S phase in a concentration-and time-de-pendent manner. After the MGC-803 cells were treated with rhMIF for 24 h,the expression of cyclin D1 was signifi cantly up-regulated compared with the cells not treated with rhMIF at both mRNA and protein levels(0.97 ± 0.02 vs 0.74 ± 0.01,P = 0.002; 0.98 ± 0.05 vs 0.69 ± 0.04,P = 0.003). The p27Kip1 was down-regulated but only statistically significant at the protein level. rhMIF significantly increased the expression of p-Akt,which reached the peak at 30 min,but did not affect the expression of Akt. However,LY294002 inhibited all the effects of rhMIF.CONCLUSION:Macrophage MIF increases the proliferation of gastric cancer cells,induces the expression of cyclin D1 at the transcriptional level and inhibits the expression of p27Kip1 at the post-transcriptional level via the PI3K/Akt pathway.
文摘In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz-Jeghers and Lynch syn- dromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancre- atic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect onco- genes and tumor-suppressor genes within RAS, AK-I- and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.