利用对峙培养法,从分离自番茄根部土壤的细菌中筛选得1株对番茄早疫病菌具强拮抗活性的菌株B731。根据形态特征、生理生化反应及16S r DNA序列分析将其鉴定为枯草芽孢杆菌Bacillus subtilis。该菌在初始p H 7.0的NB培养液、装液量25 m L...利用对峙培养法,从分离自番茄根部土壤的细菌中筛选得1株对番茄早疫病菌具强拮抗活性的菌株B731。根据形态特征、生理生化反应及16S r DNA序列分析将其鉴定为枯草芽孢杆菌Bacillus subtilis。该菌在初始p H 7.0的NB培养液、装液量25 m L(250 m L锥形瓶)、28℃、120 r/min培养24~48 h抑菌能力最大,抑菌带宽达1.24 cm,且其在番茄植株及根际土壤中有很强的定殖能力。接种15 d后,在番茄植株叶片或果实表面,其定殖量可保持在2×102 cfu/cm2以上;而在番茄根际土壤中,其定殖量可达104 cfu/g。菌株B731的代谢产物能有效抑制番茄早疫病菌分生孢子的萌发和菌丝生长,抑制率分别高达89.72%和82.62%。喷施于叶面,具有很好的防病效果,预防处理防效可高达81.83%。展开更多
Colletotrichum gloeosporioides is the causal agent of anthracnose disease in fruits and vegetables, representing a global problem. The use of biocontrol agents has proved effective against fungal diseases in a wide va...Colletotrichum gloeosporioides is the causal agent of anthracnose disease in fruits and vegetables, representing a global problem. The use of biocontrol agents has proved effective against fungal diseases in a wide variety of products. In this work, the antifungal activity of Wickerhamomyces anomalus against C. gloeosporioides isolated from contaminated avocados was evaluated. The antagonism and volatile compound inhibition were measured on Petri dishes. In the mixed cultures, the mycelia damage was observed by scanning electron microscope (SEM). Chitinase and glucanase production by the antagonism was quantified by the reducing sugars method, and biofilm formation was evaluated with 1% crystal violet. The yeast W. anomalus could reduce the growth of C. gloeosporioides up to 65% by direct antagonism and 10% by volatile compounds. The antagonist did not allow the conidia germination and mycelia growth in any of the tested formulations. SEM showed mycelial damage caused by W. anomalus. The antagonist showed adhesion to the mycelium by a polysaccharide biofilm. The presence of mycelium stimulated the hydrolytic enzyme production with the maximal activity of 21.4 U/mg for chitinases at 24 h and 10 U/mg for glucanases at 60 h. These results showed that W. anomalus used together different mechanisms to express its antifungal activity against C. gloeosporioides. This study might be the first report for this phytopathogen isolated from avocado fruits, which could represent an opportunity to establish biocontrol of diseases for this agricultural product.展开更多
文摘利用对峙培养法,从分离自番茄根部土壤的细菌中筛选得1株对番茄早疫病菌具强拮抗活性的菌株B731。根据形态特征、生理生化反应及16S r DNA序列分析将其鉴定为枯草芽孢杆菌Bacillus subtilis。该菌在初始p H 7.0的NB培养液、装液量25 m L(250 m L锥形瓶)、28℃、120 r/min培养24~48 h抑菌能力最大,抑菌带宽达1.24 cm,且其在番茄植株及根际土壤中有很强的定殖能力。接种15 d后,在番茄植株叶片或果实表面,其定殖量可保持在2×102 cfu/cm2以上;而在番茄根际土壤中,其定殖量可达104 cfu/g。菌株B731的代谢产物能有效抑制番茄早疫病菌分生孢子的萌发和菌丝生长,抑制率分别高达89.72%和82.62%。喷施于叶面,具有很好的防病效果,预防处理防效可高达81.83%。
文摘Colletotrichum gloeosporioides is the causal agent of anthracnose disease in fruits and vegetables, representing a global problem. The use of biocontrol agents has proved effective against fungal diseases in a wide variety of products. In this work, the antifungal activity of Wickerhamomyces anomalus against C. gloeosporioides isolated from contaminated avocados was evaluated. The antagonism and volatile compound inhibition were measured on Petri dishes. In the mixed cultures, the mycelia damage was observed by scanning electron microscope (SEM). Chitinase and glucanase production by the antagonism was quantified by the reducing sugars method, and biofilm formation was evaluated with 1% crystal violet. The yeast W. anomalus could reduce the growth of C. gloeosporioides up to 65% by direct antagonism and 10% by volatile compounds. The antagonist did not allow the conidia germination and mycelia growth in any of the tested formulations. SEM showed mycelial damage caused by W. anomalus. The antagonist showed adhesion to the mycelium by a polysaccharide biofilm. The presence of mycelium stimulated the hydrolytic enzyme production with the maximal activity of 21.4 U/mg for chitinases at 24 h and 10 U/mg for glucanases at 60 h. These results showed that W. anomalus used together different mechanisms to express its antifungal activity against C. gloeosporioides. This study might be the first report for this phytopathogen isolated from avocado fruits, which could represent an opportunity to establish biocontrol of diseases for this agricultural product.