期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8-Pose的码垛快速识别与抓取点检测
1
作者 郭忠峰 王健鹏 +1 位作者 杨钧麟 杨春源 《组合机床与自动化加工技术》 2024年第11期125-129,共5页
针对码垛场景中在仓库内对米袋和面袋的识别与抓取点检测的任务,提出了一种基于改进的YOLOv8-Pose的轻量化快速检测算法模型。其基于YOLOv8-Pose,使用若干个ShuffleNetv2模块取代原Darknet主干网络,降低模型大小;添加SimAM注意力机制,... 针对码垛场景中在仓库内对米袋和面袋的识别与抓取点检测的任务,提出了一种基于改进的YOLOv8-Pose的轻量化快速检测算法模型。其基于YOLOv8-Pose,使用若干个ShuffleNetv2模块取代原Darknet主干网络,降低模型大小;添加SimAM注意力机制,提升目标特征提取能力。通过对比实验表明,该模型在不牺牲准确性的前提下可提升模型的识别速度。模型在自制数据集中的平均精度达到了93.7%,检测速度达到了62 fps,优于常见模型。证明该模型能够实现复杂场景下的抓取点识别,且该轻量化模型能够适用于嵌入式硬件,降低设备成本。 展开更多
关键词 抓取点检测 YOLOv8-Pose ShuffleNetv2 轻量化网络结构
下载PDF
基于VGG16-RGBD的散乱件抓取场景下分拣点检测
2
作者 潘震宇 胡洁 +1 位作者 刘文海 薛腾 《机电一体化》 2018年第11期27-31,共5页
针对在密集环境下的散乱件抓取(Bin Picking)问题,由于存在大量的遮挡,所以要求机器人能够在有遮挡情况、物体杂乱放置的环境中对未定义物体进行可靠的抓取点检测。本文提岀了一种新颖的基于VGG16-RGBD网络的抓取点检测方法,在密集环境... 针对在密集环境下的散乱件抓取(Bin Picking)问题,由于存在大量的遮挡,所以要求机器人能够在有遮挡情况、物体杂乱放置的环境中对未定义物体进行可靠的抓取点检测。本文提岀了一种新颖的基于VGG16-RGBD网络的抓取点检测方法,在密集环境下提高了机器人抓取的准确率和精度。通过在真实机器人上实现抓取动作,证明了此方法的有效性,表明了此方法可以准确检测物体的抓取点,并且在复杂环境中达到了 94%的成功率。 展开更多
关键词 密集环境 深度学习 VGG16-RGBD 抓取点检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部