Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data...Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
Gravity and magnetic exploration areas are usually irregular,and there is some data defi ciency.Missing data must be interpolated before the vertical derivative conversion in the wavenumber domain.Meanwhile,for improv...Gravity and magnetic exploration areas are usually irregular,and there is some data defi ciency.Missing data must be interpolated before the vertical derivative conversion in the wavenumber domain.Meanwhile,for improved processing precision,the data need to be edge-padded to the length required by the fast Fourier transform algorithm.For conventional vertical derivative conversion of potential fi eld data(PFD),only vertical derivative conversion is considered,or interpolation,border padding,and vertical derivative conversion are executed independently.In this paper,these three steps are considered uniformly,and a vertical derivative conversion method for irregular-range PFD based on an improved projection onto convex sets method is proposed.The cutoff wavenumber of the filter used in the proposed method is determined by fractal model fi tting of the radial average power spectrum(RAPS)of the potential fi eld.Theoretical gravity models and real aeromagnetic data show the following:(1)The fitting of the RAPS with a fractal model can separate useful signals and noise reasonably.(2)The proposed iterative method has a clear physical sense,and its interpolation,border padding error,and running time are much smaller than those of the conventional kriging and minimum curvature methods.展开更多
Evaluation and projection of temperature extremes over China are carried out with 8 model datasets from CMIF5. Compared with the NCEP reanalysis data, multi-model weighted ensemble is capable of reproducing the 8 temp...Evaluation and projection of temperature extremes over China are carried out with 8 model datasets from CMIF5. Compared with the NCEP reanalysis data, multi-model weighted ensemble is capable of reproducing the 8 temperature extreme indices and 20-yeax return values of annual maximum/minimum temperatures. The time correlation coefficients of all the 8 indices between multi-model ensemble and the reanalysis can reach a significance level of 0.10. The spatial correlation coefficient of 20-year return level of annual maximum/minimum temperatures is greater than 0.98. Under the RCP4.5 scenario, more extreme warm events and less cold events are expected over China in multi-model ensemble. By the middle of the 21st century, the heat wave duration index will be multiplied 2.6 times. At the end of the 21st century, the cold wave duration index will decrease 71%, and the 20-year return value will increase 4℃ in parts of China for the maximum/minimum temperatures.展开更多
This paper investigated the relationship between demographic structure and international capital flows with panel data of 190 countries over the past 60 years' and projection data for the 21st century. As found, from...This paper investigated the relationship between demographic structure and international capital flows with panel data of 190 countries over the past 60 years' and projection data for the 21st century. As found, from a global perspective, the current account balance (CAB) is negatively related to the dependency ratio, and orresponding to continuous change, international eapital flows tend to move from "adult countries" to "aged or young countries." Since the middle of the 20th century, the U.S., Europe, Japan, China, Southeast Asia, Central Asia, South Asia, West Asia and Africa took turns in exporting capital to other countries. In the 2lst century, Europe, the U.S., Australia and Singapore will keep importing capital, while China in the 2030s, and Southeast Asia in the 2050s will in turn become the main capital importers. Given the demographic structure of China and the world, the future pattern of the international capital flows requires more serious concern and responses.展开更多
In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimens...In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimensional spaces. Some new elliptic function" solutions are obtained.展开更多
Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebrai...Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.展开更多
By virtue of the normal ordering of vacuum projector we directly derive some new complicated operatoridentities, regarding to the generalized Stirling number.
The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kind...The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.展开更多
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad...In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.展开更多
The purpose of this paper is to analyze the dynamic behavior of fractional-order four-order hyperchaotic Lii system, and use the Open-Plus-Closed-Looping (OPCL) coupling method to construct the system's correspondi...The purpose of this paper is to analyze the dynamic behavior of fractional-order four-order hyperchaotic Lii system, and use the Open-Plus-Closed-Looping (OPCL) coupling method to construct the system's corresponding response system, and then implement function projective synchronization (FPS) of fractional-order drive-response system with system parameters perturbation or not. Finally, the numerical simulations verify the effectiveness and robustness of this scheme.展开更多
In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. The...In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.展开更多
基金financially supported by National 863 Program (Grants No.2006AA 09A 102-09)National Science and Technology of Major Projects ( Grants No.2008ZX0 5025-001-001)
文摘Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti- noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41804136, 41774156, 61773389)the Young Talent Fund of University Association for Science and Technology in Shaanxi,China (Grant No.20180702)
文摘Gravity and magnetic exploration areas are usually irregular,and there is some data defi ciency.Missing data must be interpolated before the vertical derivative conversion in the wavenumber domain.Meanwhile,for improved processing precision,the data need to be edge-padded to the length required by the fast Fourier transform algorithm.For conventional vertical derivative conversion of potential fi eld data(PFD),only vertical derivative conversion is considered,or interpolation,border padding,and vertical derivative conversion are executed independently.In this paper,these three steps are considered uniformly,and a vertical derivative conversion method for irregular-range PFD based on an improved projection onto convex sets method is proposed.The cutoff wavenumber of the filter used in the proposed method is determined by fractal model fi tting of the radial average power spectrum(RAPS)of the potential fi eld.Theoretical gravity models and real aeromagnetic data show the following:(1)The fitting of the RAPS with a fractal model can separate useful signals and noise reasonably.(2)The proposed iterative method has a clear physical sense,and its interpolation,border padding error,and running time are much smaller than those of the conventional kriging and minimum curvature methods.
基金supported by the National Basic Research Program of China(No.2010CB950501-03)
文摘Evaluation and projection of temperature extremes over China are carried out with 8 model datasets from CMIF5. Compared with the NCEP reanalysis data, multi-model weighted ensemble is capable of reproducing the 8 temperature extreme indices and 20-yeax return values of annual maximum/minimum temperatures. The time correlation coefficients of all the 8 indices between multi-model ensemble and the reanalysis can reach a significance level of 0.10. The spatial correlation coefficient of 20-year return level of annual maximum/minimum temperatures is greater than 0.98. Under the RCP4.5 scenario, more extreme warm events and less cold events are expected over China in multi-model ensemble. By the middle of the 21st century, the heat wave duration index will be multiplied 2.6 times. At the end of the 21st century, the cold wave duration index will decrease 71%, and the 20-year return value will increase 4℃ in parts of China for the maximum/minimum temperatures.
文摘This paper investigated the relationship between demographic structure and international capital flows with panel data of 190 countries over the past 60 years' and projection data for the 21st century. As found, from a global perspective, the current account balance (CAB) is negatively related to the dependency ratio, and orresponding to continuous change, international eapital flows tend to move from "adult countries" to "aged or young countries." Since the middle of the 20th century, the U.S., Europe, Japan, China, Southeast Asia, Central Asia, South Asia, West Asia and Africa took turns in exporting capital to other countries. In the 2lst century, Europe, the U.S., Australia and Singapore will keep importing capital, while China in the 2030s, and Southeast Asia in the 2050s will in turn become the main capital importers. Given the demographic structure of China and the world, the future pattern of the international capital flows requires more serious concern and responses.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471096
文摘In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimensional spaces. Some new elliptic function" solutions are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the State Key Basic Research Development Program under Grant No.G1998030600
文摘Based on the computerized symbolic Maple, we study two important nonlinear evolution equations, i.e., the Hirota equation and the (1+1)-dimensional dispersive long wave equation by use of a direct and unified algebraic method named the general projective Riccati equation method to find more exact solutions to nonlinear differential equations. The method is more powerful than most of the existing tanh method. New and more general form solutions are obtained. The properties of the new formal solitary wave solutions are shown by some figures.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10874174 and 10947017/A05 the Specialized Research Fund for the Doctorial Progress of Higher Education of China under Grant No.20070358009
文摘By virtue of the normal ordering of vacuum projector we directly derive some new complicated operatoridentities, regarding to the generalized Stirling number.
文摘The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.
基金Supported by National Natural Science Foundation of China (No.51275348)College Students Innovation and Entrepreneurship Training Program of Tianjin University (No.201210056339)
文摘In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.
基金Supported by National Natural Science Foundation of China under Grant Nos.60573172,60973152Doctoral Program Foundation of Institution of Higher Education of China under Grant No.20070141014the Natural Science Foundation of Liaoning Province of China under Grant No.20082165
文摘The purpose of this paper is to analyze the dynamic behavior of fractional-order four-order hyperchaotic Lii system, and use the Open-Plus-Closed-Looping (OPCL) coupling method to construct the system's corresponding response system, and then implement function projective synchronization (FPS) of fractional-order drive-response system with system parameters perturbation or not. Finally, the numerical simulations verify the effectiveness and robustness of this scheme.
基金The project supported by National Natural Science Foundation of China undcr Grant No. 10172056 .
文摘In this paper, using the variable coefficient generalized projected Rieatti equation expansion method, we present explicit solutions of the (2+1)-dimensional variable coefficients Broer-Kaup (VCBK) equations. These solutions include Weierstrass function solution, solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. Because of the three or four arbitrary functions, rich localized excitations can be found.