In order to solve the electromagnetic problems on the large multi branch domains, the decomposition projective method(DPM) is generalized for multi subspaces in this paper. Furthermore multi parameters are designed fo...In order to solve the electromagnetic problems on the large multi branch domains, the decomposition projective method(DPM) is generalized for multi subspaces in this paper. Furthermore multi parameters are designed for DPM, which is called the fast DPM(FDPM), and the convergence ratio of the above algorithm is greatly increased. The examples show that the iterative number of the FDPM with optimal parameters decreases much more, which is less than one third of the DPM iteration number. After studying the ...展开更多
The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of ...The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy rained is both stable and accurate; preference relation matrix A it produces is relatively small, and the result obtherefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.展开更多
The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kind...The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.展开更多
Starting from an improved projective method and a linear variable separation approach, new families of variable separation solutions (including solltary wave solutlons, periodic wave solutions and rational function s...Starting from an improved projective method and a linear variable separation approach, new families of variable separation solutions (including solltary wave solutlons, periodic wave solutions and rational function solutions) with arbitrary functions [or the (2+ 1)-dimensional general/zed Broer-Kaup (GBK) system are derived. Usually, in terms of solitary wave solutions and/or rational function solutions, one can find abundant important localized excitations. However, based on the derived periodic wave solution in this paper, we reveal some complex wave excitations in the (2+1)-dimensional GBK system, which describe solitons moving on a periodic wave background. Some interesting evolutional properties for these solitary waves propagating on the periodic wave bactground are also briefly discussed.展开更多
The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor form...The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor format,which needs less flops and storage than the standard projection method.The structure of the coefficient matrices of the tensor equation is used to design the nearest Kronecker product(NKP) preconditioner,which is easy to construct and is able to accelerate the convergence of the iterative solver.Numerical experiments are presented to show good performance of the approaches.展开更多
文摘In order to solve the electromagnetic problems on the large multi branch domains, the decomposition projective method(DPM) is generalized for multi subspaces in this paper. Furthermore multi parameters are designed for DPM, which is called the fast DPM(FDPM), and the convergence ratio of the above algorithm is greatly increased. The examples show that the iterative number of the FDPM with optimal parameters decreases much more, which is less than one third of the DPM iteration number. After studying the ...
基金The authors would like to acknowledge the funding support of the National Natural Science Foundation of China (Nos. 50579009, 70425001 ) the National 10th Five Year Scientific Project of China for Tackling the Key Problems (2004BA608B-02-02)the Excellence Youth Teacher Sustentation Fund Program of the Ministry of Education of China (Department of Education and Personnel [ 2002 ] 350).
文摘The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy rained is both stable and accurate; preference relation matrix A it produces is relatively small, and the result obtherefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.
文摘The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant Nos. Y604106 and Y606181, the Foundation of New Century "151 Talent Engineering" of Zhejiang Province, the Scientific Research Foundation of Key Discipline of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ05005 Acknowledgments The authors are in debt to Profs. J.P. Fang, H.P. Zhu, and J.F. Zhang, and Drs. Z.Y. Ma and W.H. Huang for their fruitful discussions.
文摘Starting from an improved projective method and a linear variable separation approach, new families of variable separation solutions (including solltary wave solutlons, periodic wave solutions and rational function solutions) with arbitrary functions [or the (2+ 1)-dimensional general/zed Broer-Kaup (GBK) system are derived. Usually, in terms of solitary wave solutions and/or rational function solutions, one can find abundant important localized excitations. However, based on the derived periodic wave solution in this paper, we reveal some complex wave excitations in the (2+1)-dimensional GBK system, which describe solitons moving on a periodic wave background. Some interesting evolutional properties for these solitary waves propagating on the periodic wave bactground are also briefly discussed.
基金supported by National Natural Science Foundation of China (Grant No.10961010)Science and Technology Foundation of Guizhou Province (Grant No. LKS[2009]03)
文摘The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this paper.By fully exploiting the structure of the tensor equation,we propose a projection method based on the tensor format,which needs less flops and storage than the standard projection method.The structure of the coefficient matrices of the tensor equation is used to design the nearest Kronecker product(NKP) preconditioner,which is easy to construct and is able to accelerate the convergence of the iterative solver.Numerical experiments are presented to show good performance of the approaches.