The Chinese government has set ambitious targets to reduce the per unit of GDP by 40% ~45% during 2005 to 2020 and achieve the intensity peaking of carbon emissions of CO2 emissions a- round 2030. The T21 national dev...The Chinese government has set ambitious targets to reduce the per unit of GDP by 40% ~45% during 2005 to 2020 and achieve the intensity peaking of carbon emissions of CO2 emissions a- round 2030. The T21 national development model for China was developed for the purpose of analy- zing the effects of long-term national policies that relate to carbon emissions, loss of farm land, water shortage, energy security, food security, and their contributions to this reduction target. The focus of this paper is on the policies that have substantial impacts on carbon emissions from fossil fuels. Four scenarios are developed with the model to simulate future carbon emissions : 1 ) the BAU ( busi- ness as usual) scenario, showing the likely results of continuing current policies; 2 ) the TECH (technology) scenario showing the effects of more investment in renewable energy sources and promoting more energy efficient technologies; 3 ) the BEHAVIOR scenario, showing how government tax and price policies, together with public education programs, would instigate behaviour changes towards more sustainable living; and 4 ) the TECH&BEHA scenario, which shows the results of combining scenarios 2 and 3. The simulation results show that CO2 emissions reduction targets of China are achievable, but also require great effort to put in.展开更多
Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of th...Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of the economy, its direct input coefficient and the final demand in input-output models. In this study, we calculated the sensitivity of the reduction in the Chinese industrial wastewater discharge using the direct input coefficients based on the theory of error-transmission in an input-output framework. Using input-output models, we calculated the direct and total industrial wastewater discharge coefficients. Analysis of 2007 input-output data of 30 sectors of the Chinese economy and of 30 provincial regions of China indicates that by lowering their direct input coefficients, the manufacturers of textiles, paper and paper products, chemical products, smelting and metal pressing, telecommunication equipment, computers and other electronic equipment will significantly reduce their amounts of industrial wastewater discharge. By lowering intra-provincial direct input coefficients to industrial sectors themselves of Jiangsu, Shandong and Zhejiang, there will be a significant reduction in industrial wastewater discharge for the country as a whole. Investment in production technology and improvement in organizational efficiency in these sectors and in these provinces can help lessen the direct input coefficients, thereby effectively achieving a reduction in industrial wastewater discharge in China via industrial restructuring.展开更多
This paper provides an extended input-occupancy-output analysis of wastewater discharge coeffcients, as well as backward and forward linkages of Chinese multi-regional industrial sectors in2007. The results show that ...This paper provides an extended input-occupancy-output analysis of wastewater discharge coeffcients, as well as backward and forward linkages of Chinese multi-regional industrial sectors in2007. The results show that the direct and total industrial wastewater discharge coeffcients of most of the provincial industrial sectors in China's Eastern region are lower than those of the whole country.Both backward and forward linkages of fixed-asset occupancy in industrial sectors in China's Central and Western regions are strong. The dissimilarity of cross-sectional data of the relevant industrial wastewater discharge coeffcients and linkages in multi-regional input-output analysis becomes bigger as regions are divided more extensively.展开更多
基金Supported by the National Science&Technology Pillar Program(No.2012BAC20B09)
文摘The Chinese government has set ambitious targets to reduce the per unit of GDP by 40% ~45% during 2005 to 2020 and achieve the intensity peaking of carbon emissions of CO2 emissions a- round 2030. The T21 national development model for China was developed for the purpose of analy- zing the effects of long-term national policies that relate to carbon emissions, loss of farm land, water shortage, energy security, food security, and their contributions to this reduction target. The focus of this paper is on the policies that have substantial impacts on carbon emissions from fossil fuels. Four scenarios are developed with the model to simulate future carbon emissions : 1 ) the BAU ( busi- ness as usual) scenario, showing the likely results of continuing current policies; 2 ) the TECH (technology) scenario showing the effects of more investment in renewable energy sources and promoting more energy efficient technologies; 3 ) the BEHAVIOR scenario, showing how government tax and price policies, together with public education programs, would instigate behaviour changes towards more sustainable living; and 4 ) the TECH&BEHA scenario, which shows the results of combining scenarios 2 and 3. The simulation results show that CO2 emissions reduction targets of China are achievable, but also require great effort to put in.
基金Under the auspices of Key Program of Chinese Academy of Sciences(No.KZZD-EW-06-02)National Natural Science Foundation of China(No.41201129)Humanities and Social Science Research Planning Fund,Ministry of Education of China(No.13YJAZH042)
文摘Industrial wastewater discharge in China is increasing with the country′s economic development and it is worthy of concern. The discharge is primarily relevant to the direct discharge coefficient of each sector of the economy, its direct input coefficient and the final demand in input-output models. In this study, we calculated the sensitivity of the reduction in the Chinese industrial wastewater discharge using the direct input coefficients based on the theory of error-transmission in an input-output framework. Using input-output models, we calculated the direct and total industrial wastewater discharge coefficients. Analysis of 2007 input-output data of 30 sectors of the Chinese economy and of 30 provincial regions of China indicates that by lowering their direct input coefficients, the manufacturers of textiles, paper and paper products, chemical products, smelting and metal pressing, telecommunication equipment, computers and other electronic equipment will significantly reduce their amounts of industrial wastewater discharge. By lowering intra-provincial direct input coefficients to industrial sectors themselves of Jiangsu, Shandong and Zhejiang, there will be a significant reduction in industrial wastewater discharge for the country as a whole. Investment in production technology and improvement in organizational efficiency in these sectors and in these provinces can help lessen the direct input coefficients, thereby effectively achieving a reduction in industrial wastewater discharge in China via industrial restructuring.
基金supported by the National Natural Science Foundation of China under Grant Nos.41201129 and71203213the Science and Technology Service Network Initiative of the Chinese Academy of Sciences under Grant No.KFJ-EW-STS-003
文摘This paper provides an extended input-occupancy-output analysis of wastewater discharge coeffcients, as well as backward and forward linkages of Chinese multi-regional industrial sectors in2007. The results show that the direct and total industrial wastewater discharge coeffcients of most of the provincial industrial sectors in China's Eastern region are lower than those of the whole country.Both backward and forward linkages of fixed-asset occupancy in industrial sectors in China's Central and Western regions are strong. The dissimilarity of cross-sectional data of the relevant industrial wastewater discharge coeffcients and linkages in multi-regional input-output analysis becomes bigger as regions are divided more extensively.