Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
We propose some schemes for remote preparation of arbitrary high-dimensional equatorial entangled state via a single bipartite high-dimensional entangled state as quantum channel. We firstly present the remote prepara...We propose some schemes for remote preparation of arbitrary high-dimensional equatorial entangled state via a single bipartite high-dimensional entangled state as quantum channel. We firstly present the remote preparation of bipartite three- and d-dimensional equatorial entangled state by using a single entangled qutrit and qudit pair, respectively, and then directly generalize the schemes to multipartite case. The cases of the quantum channel being non-maximally two-qutrit and two-qudit entangled state are also considered, respectively. In these schemes the required resources are single-particle projective measurement dimensional C-NOT operation. It is shown that the greatly reduced in our schemes. appropriate local unitary operation, auxiliary particle, and highentanglement resource and classical communication cost are both展开更多
Our concern is to design an assisted-clone scheme which can produce a perfect copy of a three-particle Oreenberger-Horne-Zeilinger (GHZ) class state with a high probability. In the first stage of the protocol, the s...Our concern is to design an assisted-clone scheme which can produce a perfect copy of a three-particle Oreenberger-Horne-Zeilinger (GHZ) class state with a high probability. In the first stage of the protocol, the sender teleports the input state to the receiver by using three EPR pairs as the quantum channel. In the second stage of the protocol, a novel set of mutually orthogonal basis vectors is constructed. With the assistance of the preparer through a three-particle projective measurement under this basis, the perfect copy of an original state can be reestablished by the sender with the probability 1/2. Moreover, the classical communication cost of the scheme is also calculated.展开更多
The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the re...The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the receiver. The receiver performs the unitary transformations and makes projective measurements on his particles to obtain the secret information. Using teleportation, the transmission of three-qubit secret information can be completed in each quantum channel展开更多
An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to...An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.展开更多
Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, th...Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation(RSP) can be successfully realized via the positive operator valued measure(POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.展开更多
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
文摘We propose some schemes for remote preparation of arbitrary high-dimensional equatorial entangled state via a single bipartite high-dimensional entangled state as quantum channel. We firstly present the remote preparation of bipartite three- and d-dimensional equatorial entangled state by using a single entangled qutrit and qudit pair, respectively, and then directly generalize the schemes to multipartite case. The cases of the quantum channel being non-maximally two-qutrit and two-qudit entangled state are also considered, respectively. In these schemes the required resources are single-particle projective measurement dimensional C-NOT operation. It is shown that the greatly reduced in our schemes. appropriate local unitary operation, auxiliary particle, and highentanglement resource and classical communication cost are both
基金Supported by the National Basic Research Program of China(973 Program)under Grant No.2007CB311203the National Natural Science Foundation of China under Grant Nos.61003287 and 60821001+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(20100005120002)the Fundamental Research Funds for the Central Universities(No.BUPT2009RC0220)the 111 Project(No.B08004)
文摘Our concern is to design an assisted-clone scheme which can produce a perfect copy of a three-particle Oreenberger-Horne-Zeilinger (GHZ) class state with a high probability. In the first stage of the protocol, the sender teleports the input state to the receiver by using three EPR pairs as the quantum channel. In the second stage of the protocol, a novel set of mutually orthogonal basis vectors is constructed. With the assistance of the preparer through a three-particle projective measurement under this basis, the perfect copy of an original state can be reestablished by the sender with the probability 1/2. Moreover, the classical communication cost of the scheme is also calculated.
基金supported by the National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province under Grant No.2008006
文摘The sender shares six-particle maximally entangled states as quantum channel with the receiver. If the quantum channel is secure, the sender performs projective measurements and tells the measurement outcome to the receiver. The receiver performs the unitary transformations and makes projective measurements on his particles to obtain the secret information. Using teleportation, the transmission of three-qubit secret information can be completed in each quantum channel
文摘An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.
基金Supported by Excellent Youth Foundation of AnHui under Grant No. 2012SQRL136ZD, Anhui Municipal Natural Science Foundation under Grant No. 1208085QA18, Foundation of Anhui Educational Committee under Grant No. KJ2012B042, Anhui Provincial Natural Science Foundation under Grant No. 1308085MF98
文摘Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation(RSP) can be successfully realized via the positive operator valued measure(POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.