AIM: To evaluate the effects of antiviral agents and HBV genotypes on intrahepatic covalently closed circular DNA (ccc DNA) in HBeAg-positive chronic hepatitis B patients.METHODS: Seventy-one patients received lam...AIM: To evaluate the effects of antiviral agents and HBV genotypes on intrahepatic covalently closed circular DNA (ccc DNA) in HBeAg-positive chronic hepatitis B patients.METHODS: Seventy-one patients received lamivudine (n = 35), or sequential therapy with lamivudine- interferon alpha 2b (IFN-α 2b, n = 24) for 48 wk, or IFN-α 2b (n = 12) for 24 wk. All subjects were followed up for 24 wk. Intrahepatic ccc DNA was measured quantitatively by PCR. HBV genotypes were analyzed by PCR-RFLP.RESULTS: Sequential lamivudine- INF-α therapy, lamivudine and INF-α monotherapy reduced ccc DNA of 1.7 log, 1.4 log and 0.8 log, respectively (P 〈 0.05). Seventeen out of the 71 patieots developed HBeAg seroconversion, the reduction of ccc DNA in the HBeAg seroconversion patients was more significant than that in the HBeAg positive patients (3.0 log vs 1.6 log, P = 0.0407). Twenty-four weeks after antiviral therapy withdrawal, 16 patients had a sustained virological response, the baseline intrahepatic ccc DNA in the patients with a sustained virological response was significantly lower than that in the patients with virological rebound (4.6 log vs 5.4 log, P = 0.0472). HBV genotype C accounted for 85.9% (n = 61), and genotype B for 14.1% (n = 10), respectively, in the 71 patients. There was no significant difference in the change of ccc DNA level between HBV genotypes C and B (2.1 log vs 1.9 log).CONCLUSION: Forty-eight week sequential lamivudine- INF-α therapy and lamivudine monotherapy reduce ccc DNA more significantly than 24-wk INF-α monotherapy. Low baseline intrahepatic ccc DNA level may predict the long-term efficacy of antiviral treatment. HBV genotypes C and B have no obvious influence on ccc DNA load.展开更多
Chronic infection of hepatitis B virus (HBV) presents one of the serious public health challenges worldwide. Current treatment of chronic hepatitis B (CHB) is limited, and is composed of interferon and nucleoside/nucl...Chronic infection of hepatitis B virus (HBV) presents one of the serious public health challenges worldwide. Current treatment of chronic hepatitis B (CHB) is limited, and is composed of interferon and nucleoside/nucleotide reverse transcriptase inhibitors (NRTI). Interferon is poorly tolerated and is only responsive in a small fraction of CHB patients and NRTIs often face the problem of emergence of drug resistance during long-term treatment. The current treatment of CHB can be improved in several ways including genotyping mutations associated with drug resistance before treatment to guide the choice of NRTIs and suitable combinations among NRTIs and interferon. It is important to continue research in the identification of novel therapeutic targets in the life cycle of HBV or in the host immune system to stimulate the development of new antiviral agents and immunotherapies. Several antiviral agents targeting HBV entry, cccDNA, capsid formation, viral morphogenesis and virion secretion, as well as two therapeutic vaccines are currently being evaluated in preclinical studies or in clinical trials to assess their anti-HBV efficacy.展开更多
基金Beijing Municipal Science & Technology Commission, No. H020920020690
文摘AIM: To evaluate the effects of antiviral agents and HBV genotypes on intrahepatic covalently closed circular DNA (ccc DNA) in HBeAg-positive chronic hepatitis B patients.METHODS: Seventy-one patients received lamivudine (n = 35), or sequential therapy with lamivudine- interferon alpha 2b (IFN-α 2b, n = 24) for 48 wk, or IFN-α 2b (n = 12) for 24 wk. All subjects were followed up for 24 wk. Intrahepatic ccc DNA was measured quantitatively by PCR. HBV genotypes were analyzed by PCR-RFLP.RESULTS: Sequential lamivudine- INF-α therapy, lamivudine and INF-α monotherapy reduced ccc DNA of 1.7 log, 1.4 log and 0.8 log, respectively (P 〈 0.05). Seventeen out of the 71 patieots developed HBeAg seroconversion, the reduction of ccc DNA in the HBeAg seroconversion patients was more significant than that in the HBeAg positive patients (3.0 log vs 1.6 log, P = 0.0407). Twenty-four weeks after antiviral therapy withdrawal, 16 patients had a sustained virological response, the baseline intrahepatic ccc DNA in the patients with a sustained virological response was significantly lower than that in the patients with virological rebound (4.6 log vs 5.4 log, P = 0.0472). HBV genotype C accounted for 85.9% (n = 61), and genotype B for 14.1% (n = 10), respectively, in the 71 patients. There was no significant difference in the change of ccc DNA level between HBV genotypes C and B (2.1 log vs 1.9 log).CONCLUSION: Forty-eight week sequential lamivudine- INF-α therapy and lamivudine monotherapy reduce ccc DNA more significantly than 24-wk INF-α monotherapy. Low baseline intrahepatic ccc DNA level may predict the long-term efficacy of antiviral treatment. HBV genotypes C and B have no obvious influence on ccc DNA load.
基金supported by "973" project(2005CB522902)Grand Science and Technology Special Project (2008ZX10002-010,015)Shanghai Municipal Government (8410706800)
文摘Chronic infection of hepatitis B virus (HBV) presents one of the serious public health challenges worldwide. Current treatment of chronic hepatitis B (CHB) is limited, and is composed of interferon and nucleoside/nucleotide reverse transcriptase inhibitors (NRTI). Interferon is poorly tolerated and is only responsive in a small fraction of CHB patients and NRTIs often face the problem of emergence of drug resistance during long-term treatment. The current treatment of CHB can be improved in several ways including genotyping mutations associated with drug resistance before treatment to guide the choice of NRTIs and suitable combinations among NRTIs and interferon. It is important to continue research in the identification of novel therapeutic targets in the life cycle of HBV or in the host immune system to stimulate the development of new antiviral agents and immunotherapies. Several antiviral agents targeting HBV entry, cccDNA, capsid formation, viral morphogenesis and virion secretion, as well as two therapeutic vaccines are currently being evaluated in preclinical studies or in clinical trials to assess their anti-HBV efficacy.