The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbid- ity and mortality because of its antigenic variation. So far, very little is known about the anti...The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbid- ity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-1ike strains) and HK14 (A/Hong Kong/5738/2014-1ike strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in China's Mainland, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an im- portant role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.展开更多
基金supported by the National Basic Research Program of China(2015CB910501)the Major National Earmark Project for Infectious Diseases(2014ZX10004002-001)+1 种基金the Key Research Program of the Chinese Academy of Sciences(KJZD-EW-L09-1-2)to Jiang Tai Jiaothe National Natural Science Foundation of China(31470273)to Wu Ai Ping
文摘The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbid- ity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-1ike strains) and HK14 (A/Hong Kong/5738/2014-1ike strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in China's Mainland, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an im- portant role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.