期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于摇摆柱原理的古建筑木结构柱架抗侧分析及试验验证 被引量:8
1
作者 张风亮 赵鸿铁 +3 位作者 薛建阳 谢启芳 隋 罗峥 《工业建筑》 CSCD 北大核心 2013年第10期55-60,共6页
古建筑木结构柱架的抗侧能力对整体结构的抗震性能有着重要的影响。通过对柱架受力机理进行分析,得出在水平反复荷载作用下柱架的受力变形以侧移为主,类似于"摇摆柱";柱摇摆产生的埋置嵌入作用是柱架产生抵抗弯矩的根本原因;... 古建筑木结构柱架的抗侧能力对整体结构的抗震性能有着重要的影响。通过对柱架受力机理进行分析,得出在水平反复荷载作用下柱架的受力变形以侧移为主,类似于"摇摆柱";柱摇摆产生的埋置嵌入作用是柱架产生抵抗弯矩的根本原因;基于"摇摆柱"原理,并结合试验提出水平反复荷载作用下古建筑木结构柱架抗侧弯矩的理论计算公式,其计算结果与试验结果吻合良好;将试验与理论计算得出的M-θ骨架曲线进行拟合,分别得出了三组柱架的抗侧刚度公式。 展开更多
关键词 柱架 摇摆柱 抗侧分析 埋置嵌入 试验验证 弯矩
原文传递
高层转运站的抗侧力分析
2
作者 万超 《城市建筑》 2013年第16期38-39,共2页
混凝土高层转运站常用的结构体系有框架结构、框架-支撑结构、框架—抗震墙结构。本文以镇江某港口中的高层转运站为例,对以上三种不同结构体系的转运站进行了抗侧力分析。根据结构对比分析,得出了合理的结构体系,优化了结构设计。
关键词 高层转运站 有框架结构 框架—支撑结构 框架—震墙结构 分析
下载PDF
东深改造工程B-Ⅲ3标段砼抗裂防渗分析和控制 被引量:1
3
作者 彭栋善 《广东水利水电》 2005年第5期73-74,77,共3页
东深改造工程建设的总体目标是“精心设计、精心施工、创全国一流的供水工程”,各标段砼的抗裂防渗是实现总体目标的关键。该文就东深改造工程B-Ⅲ3标段输水箱涵抗裂和防渗控制从设计到施工各个环节,进行抗裂防渗的分析和控制,总结了本... 东深改造工程建设的总体目标是“精心设计、精心施工、创全国一流的供水工程”,各标段砼的抗裂防渗是实现总体目标的关键。该文就东深改造工程B-Ⅲ3标段输水箱涵抗裂和防渗控制从设计到施工各个环节,进行抗裂防渗的分析和控制,总结了本标段工程没有出现一条裂缝和一滴渗流的经验和措施。 展开更多
关键词 东深改造工程、砼壁、裂防渗、分析和控制
下载PDF
Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks 被引量:21
4
作者 DEHGHAN S SATTARI Gh +1 位作者 CHEHREH CHELGANI S ALIABADI M A 《Mining Science and Technology》 EI CAS 2010年第1期41-46,共6页
Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathem... Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathematical methods, regression analysis and Artificial Neural Networks (ANNs), were used to predict the uniaxial compressive strength and modulus of elasticity. The P-wave velocity, the point load index, the Schmidt hammer rebound number and porosity were used as inputs for both meth-ods. The regression equations show that the relationship between P-wave velocity, point load index, Schmidt hammer rebound number and the porosity input sets with uniaxial compressive strength and modulus of elasticity under conditions of linear rela-tions obtained coefficients of determination of (R2) of 0.64 and 0.56, respectively. ANNs were used to improve the regression re-sults. The generalized regression and feed forward neural networks with two outputs (UCS and E) improved the coefficients of determination to more acceptable levels of 0.86 and 0.92 for UCS and to 0.77 and 0.82 for E. The results show that the proposed ANN methods could be applied as a new acceptable method for the prediction of uniaxial compressive strength and modulus of elasticity of intact rocks. 展开更多
关键词 uniaxial compressive strength modulus of elasticity artificial neural networks regression TRAVERTINE
下载PDF
Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system 被引量:7
5
作者 Mohammad Rezaei Mostafa Asadizadeh +1 位作者 Abbas Majdi Mohammad Farouq Hossaini 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期23-30,共8页
Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression a... Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively. 展开更多
关键词 Deformation modulusDilatometer testMamdani fuzzy systemMultivariable regression analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部