A submodel method was proposed that works from computational models of marine gear cases to verify that the proposed bolts will give it sufficient structural integrity. Calculations for marine equipment using this sys...A submodel method was proposed that works from computational models of marine gear cases to verify that the proposed bolts will give it sufficient structural integrity. Calculations for marine equipment using this system accorded well with conventional results. As an example, an anti-shock computation was processed for a gear case, and the submodel was then employed to check the strength of individual components. The results showed that the gear case connecting structure can satisfy relative anti-shock requirements, and the dynamic response characteristics seen in the bolt structures had a close relationship with the method used for attaching the bolt. This provides a new means for checking the strength of connecting structures on large-scale equipment and thus has significant reference value.展开更多
基金Supported by the Shipbuilding Industry of National Defense Science and Technology Research Projects in Advance (07J1.5.3)
文摘A submodel method was proposed that works from computational models of marine gear cases to verify that the proposed bolts will give it sufficient structural integrity. Calculations for marine equipment using this system accorded well with conventional results. As an example, an anti-shock computation was processed for a gear case, and the submodel was then employed to check the strength of individual components. The results showed that the gear case connecting structure can satisfy relative anti-shock requirements, and the dynamic response characteristics seen in the bolt structures had a close relationship with the method used for attaching the bolt. This provides a new means for checking the strength of connecting structures on large-scale equipment and thus has significant reference value.