Under the effect of chemical etching,the macroscopic mechanical properties,mesoscopic structure,mineral content,and porosity of rocks undergo significant changes,which can lead to the geological disasters; thus,an und...Under the effect of chemical etching,the macroscopic mechanical properties,mesoscopic structure,mineral content,and porosity of rocks undergo significant changes,which can lead to the geological disasters; thus,an understanding of changes in the microscopic and macroscopic structure of rocks after chemical etching is crucial.In this study,uniaxial mechanical tests and nuclear magnetic resonance(NMR) spectroscopy were carried out on sandstone samples that had been previously subjected to chemical erosion under different p H values.The aim was to study changes in properties and mechanical characteristics,including deformation and strength characteristics,of the rock,and microscopic pore variation characteristics,and to perform preliminary studies of the chemical corrosion mechanism.Results show that different chemical solutions have a significant influence on the uniaxial compressive strength,the axial strain corresponding to the peak axial stress,elastic modulus,etc.With the passage of time,porosity increases gradually with exposure to different chemical solutions,and exposure to chemical solutions results in large changes in the NMR T2 curve and T2 spectrum area.Sandstone exposed to different chemical solutions exhibits different corrosion mechanisms; the root cause is the change of mineral.展开更多
The residue drying area(RDA)is the major source of fugitive red sand(RS)dust emissions in the bauxite mining industry and causes serious environmental and safety detriments.Polymer stabilizer(PS)is one of the promisin...The residue drying area(RDA)is the major source of fugitive red sand(RS)dust emissions in the bauxite mining industry and causes serious environmental and safety detriments.Polymer stabilizer(PS)is one of the promising non-traditional stabilizers to mitigate such issues.This research investigated the unconfined compressive strength(UCS)of RS using synthetic polymer stabilizer(SPS)and natural polymer stabilizer(NPS),and to determine the optimum application concentration and mixing ratio of the PAM and Guar gum mixture.Results illustrated that PAM apparently outperform Guar gum in stabilizing sand particles.The mixture of PAM and Guar gum is more effective than individual use.The optimum polymer concentration and the mixing ratio are 0.94 wt.%and 0.6(PAM:total(PAM+Guar gum)),respectively.A rigorous regression model was developed to predict the UCS value based on application concentration and mixing ratio for the purpose of cost and time efficiency.展开更多
A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into ...A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into three regions: an expanded and dense region; a crack-development region; and a noncorroded region. Second, based on the thickness of the surface corrosion layer and the rate of loss of compressive strength of the corroding region, a computational model of the concrete blocks' corrosion-resistance coefficient of compressive strength in a sulphate environment was generated. Third, experimental tests of the corrosion of concrete were conducted by immersing specimens in a corrosive medium for 270 d. A comparison of the experimental results with the computational formulae shows that the calculation results and test results are in good agreement. A parameter analysis reveals that the corrosion reaction plays a major role in the corrosion of fresh concrete containing ordinary Portland cement,but the diffusion of the corrosion medium plays a major role in the corrosion of concrete mixtures containing fly ash and sulphate-resistant cement. Fresh concrete with a high water-to-cement ratio shows high performance during the whole experiment process whereas fresh concrete with a low water-to-cement ratio shows poor performance during the late experiment period.展开更多
Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry,i.e.the rebound method,pulling-out method and core drilling method were employed to test the st...Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry,i.e.the rebound method,pulling-out method and core drilling method were employed to test the strength of block,mortar and grouted concrete,respectively.The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed,and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods.The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out.Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry.Moreover,the formulas of compressive strength,detection methods and proposals are given as well.展开更多
The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy s...The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy soil is necessary to reduce the total amount of industrial wastes. Surplus concrete is also in a similar situation. Coarse and fine aggregates are removed from surplus concrete as an intermediate treatment, however, concrete sludge still remains. The authors propose a reuse method that involves the muddy soil being mixed with concrete sludge as an improvement material. The possibility of the utilization of concrete sludge was investigated through laboratory experiments. As a result, it was found that the unconfined compressive strength of the improved soil mixed with concrete sludge increased as the curing proceeded.展开更多
This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of ...This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.展开更多
To investigate the strength and deformation behavior of plain high-strength concrete (HSC) under muhiaxial stress states, a large static-dynamic true triaxial machine was employed, and muhiaxial tests were performed...To investigate the strength and deformation behavior of plain high-strength concrete (HSC) under muhiaxial stress states, a large static-dynamic true triaxial machine was employed, and muhiaxial tests were performed on 100 mm × 100 mm × 100 mm cubes concrete specimens. Friction-reducing pads were three-layer plastic membranes with glycerine in-between for the compressive loading plane. The tensile loading plane of concrete samples was processed by attrition machine, and then the samples were glued up with the loading plate with structural glue. Failure modes of specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured, and the influence of stress ratios on them was analyzed as well. Experimental results show that the ratio of the compressive strength σ3f over the uniaxial compressive strengthfo depends on brittleness-stiffness of concrete besides stress state and stress ratios. The formula of Kupfer-Gerstle' s and Ottosen' s failure criterion for plain HSC under biaxial compression and muhiaxial stress state is proposed respectively.展开更多
Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fract...Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.展开更多
When every parameter is properly scaled down in accordance with some similarity coefficients, it is possible to study the physical-mechanical properties of rock mass with a scale model. To identify the key mechanisms ...When every parameter is properly scaled down in accordance with some similarity coefficients, it is possible to study the physical-mechanical properties of rock mass with a scale model. To identify the key mechanisms of soft rock in deep buried tunnels, the proper sand, binder and ratio were selected. During the process, the model manufacture technology was introduced and typical tests were done and the results were presented. The physical and meehanieal properties effects caused by each composition were discussed. It is shown that the physical and mechanical properties of chosen ratio material such as uniaxial compressive strength tests, elasticity modulus, tensile strength, internal frictional angle, and Poisson's ratio meet with similarity relationship well. The physical and mechanical properties of deep soft rock are simulated successfully.展开更多
For the abnormal ice condition in 2009-2010 winter, sea ice samples were collected in a tide ditch outside a port in the east coast of Liaodong Bay, and ice specimens were prepared. Experimental study was carried out ...For the abnormal ice condition in 2009-2010 winter, sea ice samples were collected in a tide ditch outside a port in the east coast of Liaodong Bay, and ice specimens were prepared. Experimental study was carried out with a temperature-control precision of 0.1℃, and 117 columnar-grained ice specimens were loaded along the direction parallel to ice surface under different test temperatures (-4, -7, -10, -13, -16℃) and strain rates ranging from 10^-6 to 10^-2 s^-1 within which the ductile region, duetile-brittle transition and brittle region are contained. The uniaxial compressive strengths, density and salinity of the ice specmens were measured. The results support the curved-surface relationship between the uniaxial compressive strength and porosity within a wide range of strain rate. The curved-surface relationship gives a quantitative description about the variations of the mechanical behavior transition point with ice porosity, and supplies a uniform mathematical representation of uniaxial compressive strength under different failure modes. Besides, it is deduced that abnormal ice condition in 2009-2010 winter will not result in a change of the uniaxial compressive strength of sea ice in Bohai Sea.展开更多
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2011CB013503)the National Natural Science Foundation of China (Grant No.51374112,51679093)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQNPY112,ZQN-PY311)
文摘Under the effect of chemical etching,the macroscopic mechanical properties,mesoscopic structure,mineral content,and porosity of rocks undergo significant changes,which can lead to the geological disasters; thus,an understanding of changes in the microscopic and macroscopic structure of rocks after chemical etching is crucial.In this study,uniaxial mechanical tests and nuclear magnetic resonance(NMR) spectroscopy were carried out on sandstone samples that had been previously subjected to chemical erosion under different p H values.The aim was to study changes in properties and mechanical characteristics,including deformation and strength characteristics,of the rock,and microscopic pore variation characteristics,and to perform preliminary studies of the chemical corrosion mechanism.Results show that different chemical solutions have a significant influence on the uniaxial compressive strength,the axial strain corresponding to the peak axial stress,elastic modulus,etc.With the passage of time,porosity increases gradually with exposure to different chemical solutions,and exposure to chemical solutions results in large changes in the NMR T2 curve and T2 spectrum area.Sandstone exposed to different chemical solutions exhibits different corrosion mechanisms; the root cause is the change of mineral.
基金Project(2016YFC0501103)supported by the National Key Research and Development Program of ChinaProject(51574222)supported by the General Program of National Science Foundation of China+1 种基金Project(SKLCRSM15KF01)supported by Independent Research Projects of State Key Laboratory of Coal Resources and Safe Mining,CUMT,ChinaProject(2015)supported by the Mining Education Australia Collaborative Research Grant Scheme
文摘The residue drying area(RDA)is the major source of fugitive red sand(RS)dust emissions in the bauxite mining industry and causes serious environmental and safety detriments.Polymer stabilizer(PS)is one of the promising non-traditional stabilizers to mitigate such issues.This research investigated the unconfined compressive strength(UCS)of RS using synthetic polymer stabilizer(SPS)and natural polymer stabilizer(NPS),and to determine the optimum application concentration and mixing ratio of the PAM and Guar gum mixture.Results illustrated that PAM apparently outperform Guar gum in stabilizing sand particles.The mixture of PAM and Guar gum is more effective than individual use.The optimum polymer concentration and the mixing ratio are 0.94 wt.%and 0.6(PAM:total(PAM+Guar gum)),respectively.A rigorous regression model was developed to predict the UCS value based on application concentration and mixing ratio for the purpose of cost and time efficiency.
基金Project(51078176) supported by the National Natural Science Foundation of ChinaProject(JK2010-58) supported by the Construction Science and Technology Research Project in Gansu Province,China
文摘A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into three regions: an expanded and dense region; a crack-development region; and a noncorroded region. Second, based on the thickness of the surface corrosion layer and the rate of loss of compressive strength of the corroding region, a computational model of the concrete blocks' corrosion-resistance coefficient of compressive strength in a sulphate environment was generated. Third, experimental tests of the corrosion of concrete were conducted by immersing specimens in a corrosive medium for 270 d. A comparison of the experimental results with the computational formulae shows that the calculation results and test results are in good agreement. A parameter analysis reveals that the corrosion reaction plays a major role in the corrosion of fresh concrete containing ordinary Portland cement,but the diffusion of the corrosion medium plays a major role in the corrosion of concrete mixtures containing fly ash and sulphate-resistant cement. Fresh concrete with a high water-to-cement ratio shows high performance during the whole experiment process whereas fresh concrete with a low water-to-cement ratio shows poor performance during the late experiment period.
文摘Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry,i.e.the rebound method,pulling-out method and core drilling method were employed to test the strength of block,mortar and grouted concrete,respectively.The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed,and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods.The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out.Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry.Moreover,the formulas of compressive strength,detection methods and proposals are given as well.
文摘The amount of muddy soil generated from various kinds of construction sites is always problematic. It is very difficult to treat muddy soil because of its low strength and high water content. But, the reuse of muddy soil is necessary to reduce the total amount of industrial wastes. Surplus concrete is also in a similar situation. Coarse and fine aggregates are removed from surplus concrete as an intermediate treatment, however, concrete sludge still remains. The authors propose a reuse method that involves the muddy soil being mixed with concrete sludge as an improvement material. The possibility of the utilization of concrete sludge was investigated through laboratory experiments. As a result, it was found that the unconfined compressive strength of the improved soil mixed with concrete sludge increased as the curing proceeded.
文摘This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.
文摘To investigate the strength and deformation behavior of plain high-strength concrete (HSC) under muhiaxial stress states, a large static-dynamic true triaxial machine was employed, and muhiaxial tests were performed on 100 mm × 100 mm × 100 mm cubes concrete specimens. Friction-reducing pads were three-layer plastic membranes with glycerine in-between for the compressive loading plane. The tensile loading plane of concrete samples was processed by attrition machine, and then the samples were glued up with the loading plate with structural glue. Failure modes of specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured, and the influence of stress ratios on them was analyzed as well. Experimental results show that the ratio of the compressive strength σ3f over the uniaxial compressive strengthfo depends on brittleness-stiffness of concrete besides stress state and stress ratios. The formula of Kupfer-Gerstle' s and Ottosen' s failure criterion for plain HSC under biaxial compression and muhiaxial stress state is proposed respectively.
基金Project(50438010) supported by the Key Program of the National Natural Science Foundation of ChinaProject(JGZXJJ2006-13) supported by the Research and Application Programs of Key Technologies for Major Constructions in the South-North Water Transfer Project Construction in China
文摘Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.
基金Supported by the New Century Excellent Talent Foundation from MOE of China(NCET-09-0844) the National Natural Science Foundation of China (50804060, 50921063)
文摘When every parameter is properly scaled down in accordance with some similarity coefficients, it is possible to study the physical-mechanical properties of rock mass with a scale model. To identify the key mechanisms of soft rock in deep buried tunnels, the proper sand, binder and ratio were selected. During the process, the model manufacture technology was introduced and typical tests were done and the results were presented. The physical and meehanieal properties effects caused by each composition were discussed. It is shown that the physical and mechanical properties of chosen ratio material such as uniaxial compressive strength tests, elasticity modulus, tensile strength, internal frictional angle, and Poisson's ratio meet with similarity relationship well. The physical and mechanical properties of deep soft rock are simulated successfully.
基金supported by the National Natural Science Foundation of China(Grant Nos.50921001,50879008)State Key Laboratory of Fro-zen Soil Engineering(Grant No.SKLFSE200904)+1 种基金Vilho,Yrj and Kalle Visl Fund of the Finnish Academy of Sciences and Lettersthe Norwegian Research Council Project AMORA(Grant No.193592/S30)
文摘For the abnormal ice condition in 2009-2010 winter, sea ice samples were collected in a tide ditch outside a port in the east coast of Liaodong Bay, and ice specimens were prepared. Experimental study was carried out with a temperature-control precision of 0.1℃, and 117 columnar-grained ice specimens were loaded along the direction parallel to ice surface under different test temperatures (-4, -7, -10, -13, -16℃) and strain rates ranging from 10^-6 to 10^-2 s^-1 within which the ductile region, duetile-brittle transition and brittle region are contained. The uniaxial compressive strengths, density and salinity of the ice specmens were measured. The results support the curved-surface relationship between the uniaxial compressive strength and porosity within a wide range of strain rate. The curved-surface relationship gives a quantitative description about the variations of the mechanical behavior transition point with ice porosity, and supplies a uniform mathematical representation of uniaxial compressive strength under different failure modes. Besides, it is deduced that abnormal ice condition in 2009-2010 winter will not result in a change of the uniaxial compressive strength of sea ice in Bohai Sea.