The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive st...The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.展开更多
The residue drying area(RDA)is the major source of fugitive red sand(RS)dust emissions in the bauxite mining industry and causes serious environmental and safety detriments.Polymer stabilizer(PS)is one of the promisin...The residue drying area(RDA)is the major source of fugitive red sand(RS)dust emissions in the bauxite mining industry and causes serious environmental and safety detriments.Polymer stabilizer(PS)is one of the promising non-traditional stabilizers to mitigate such issues.This research investigated the unconfined compressive strength(UCS)of RS using synthetic polymer stabilizer(SPS)and natural polymer stabilizer(NPS),and to determine the optimum application concentration and mixing ratio of the PAM and Guar gum mixture.Results illustrated that PAM apparently outperform Guar gum in stabilizing sand particles.The mixture of PAM and Guar gum is more effective than individual use.The optimum polymer concentration and the mixing ratio are 0.94 wt.%and 0.6(PAM:total(PAM+Guar gum)),respectively.A rigorous regression model was developed to predict the UCS value based on application concentration and mixing ratio for the purpose of cost and time efficiency.展开更多
In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matri...In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.展开更多
In this paper, the effect of the source of recycled coarse aggregate on the properties of concrete is investigated. The tests were conducted on concrete made from three sources of recycled aggregates: (1) old concr...In this paper, the effect of the source of recycled coarse aggregate on the properties of concrete is investigated. The tests were conducted on concrete made from three sources of recycled aggregates: (1) old concrete with unknown strength, (2) old concrete with a known compressive strength of 21 MPa, and (3) old concrete with a known strength of 42 MPa. The three sources of recycled aggregates were used to produce new concrete with a target compressive strength of 21 MPa. The first and third sources of recycled aggregates were used in producing concrete with target strength of 42 MPa. A control mix was designed with aggregates from natural sources. The research included two methods of making recycled concrete. One concrete mix was produced using the recycled aggregate and adding more water than the control mix, to reach the target slump, while the second concrete mix was produced using the same amount of water as the control mix but with additional superplasticizer to maintain the target slump. The results obtained in this research showed that the concrete compressive strength depends on the source of recycled aggregates; the stronger the source of recycled aggregate, the higher the compressive strength of the produced concrete. Furthermore, the compressive strength of the first concrete mix was about 10%-20% lower than the compressive strength of the control mix. However, when superplasticizers were used, the compressive strength was around the same value as the control mix.展开更多
The study presented an analysis accessing the feasibility of using concrete containing marginal aggregates in concrete pavement slabs. The physical properties of aggregates were first determined and concrete was produ...The study presented an analysis accessing the feasibility of using concrete containing marginal aggregates in concrete pavement slabs. The physical properties of aggregates were first determined and concrete was produced from them. Marginal aggregates were found to have higher fines, absorption, soundness loss, micro-Deval abrasion loss, LA (Los Angeles) abrasion loss and lower specific gravity and unit weight when compared with standard aggregates. Workability of concrete containing marginal aggregate was found to be similar to concrete containing normal aggregates when Shilstone mix design method was used to optimize the concrete mixes. The compressive strength, splitting tensile, flexural strength and modulus of elasticity of concrete containing marginal aggregates were determined and found to be generally lower than concrete containing standard aggregates. A typical concrete pavement in Florida was modeled in FEACONSIV (finite element analysis of concrete slab) software developed at the University of Florida. Laboratory determined mechanical and thermal properties of concrete were inputted in FEACONS IV and analyzed for maximum induced stresses. Critical stress to strength ratios, i.e., ratio between maximum computed stresses obtained from FEACONS IV to modulus of rupture (strength) of concrete, was used as evaluation criterion for different concrete pavement mixes. It was found that, in general, concrete containing marginal aggregates have higher stress to strength ratios as compared with concrete containing standard aggregates.展开更多
基金The National Basic Research Program of China (973Program)(No2000CB610703)
文摘The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.
基金Project(2016YFC0501103)supported by the National Key Research and Development Program of ChinaProject(51574222)supported by the General Program of National Science Foundation of China+1 种基金Project(SKLCRSM15KF01)supported by Independent Research Projects of State Key Laboratory of Coal Resources and Safe Mining,CUMT,ChinaProject(2015)supported by the Mining Education Australia Collaborative Research Grant Scheme
文摘The residue drying area(RDA)is the major source of fugitive red sand(RS)dust emissions in the bauxite mining industry and causes serious environmental and safety detriments.Polymer stabilizer(PS)is one of the promising non-traditional stabilizers to mitigate such issues.This research investigated the unconfined compressive strength(UCS)of RS using synthetic polymer stabilizer(SPS)and natural polymer stabilizer(NPS),and to determine the optimum application concentration and mixing ratio of the PAM and Guar gum mixture.Results illustrated that PAM apparently outperform Guar gum in stabilizing sand particles.The mixture of PAM and Guar gum is more effective than individual use.The optimum polymer concentration and the mixing ratio are 0.94 wt.%and 0.6(PAM:total(PAM+Guar gum)),respectively.A rigorous regression model was developed to predict the UCS value based on application concentration and mixing ratio for the purpose of cost and time efficiency.
基金Project(2009CB623200) supported by the National Basic Research Program of ChinaProjects(50702014, 50878043) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0116) supported by the Program for New Century Excellent Talents in University of Ministry of Education, China
文摘In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.
文摘In this paper, the effect of the source of recycled coarse aggregate on the properties of concrete is investigated. The tests were conducted on concrete made from three sources of recycled aggregates: (1) old concrete with unknown strength, (2) old concrete with a known compressive strength of 21 MPa, and (3) old concrete with a known strength of 42 MPa. The three sources of recycled aggregates were used to produce new concrete with a target compressive strength of 21 MPa. The first and third sources of recycled aggregates were used in producing concrete with target strength of 42 MPa. A control mix was designed with aggregates from natural sources. The research included two methods of making recycled concrete. One concrete mix was produced using the recycled aggregate and adding more water than the control mix, to reach the target slump, while the second concrete mix was produced using the same amount of water as the control mix but with additional superplasticizer to maintain the target slump. The results obtained in this research showed that the concrete compressive strength depends on the source of recycled aggregates; the stronger the source of recycled aggregate, the higher the compressive strength of the produced concrete. Furthermore, the compressive strength of the first concrete mix was about 10%-20% lower than the compressive strength of the control mix. However, when superplasticizers were used, the compressive strength was around the same value as the control mix.
文摘The study presented an analysis accessing the feasibility of using concrete containing marginal aggregates in concrete pavement slabs. The physical properties of aggregates were first determined and concrete was produced from them. Marginal aggregates were found to have higher fines, absorption, soundness loss, micro-Deval abrasion loss, LA (Los Angeles) abrasion loss and lower specific gravity and unit weight when compared with standard aggregates. Workability of concrete containing marginal aggregate was found to be similar to concrete containing normal aggregates when Shilstone mix design method was used to optimize the concrete mixes. The compressive strength, splitting tensile, flexural strength and modulus of elasticity of concrete containing marginal aggregates were determined and found to be generally lower than concrete containing standard aggregates. A typical concrete pavement in Florida was modeled in FEACONSIV (finite element analysis of concrete slab) software developed at the University of Florida. Laboratory determined mechanical and thermal properties of concrete were inputted in FEACONS IV and analyzed for maximum induced stresses. Critical stress to strength ratios, i.e., ratio between maximum computed stresses obtained from FEACONS IV to modulus of rupture (strength) of concrete, was used as evaluation criterion for different concrete pavement mixes. It was found that, in general, concrete containing marginal aggregates have higher stress to strength ratios as compared with concrete containing standard aggregates.