To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the com...To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the compressive property, a new artificial intelligence model was proposed by combining a newly invented meta-heuristics algorithm(salp swarm algorithm, SSA) and extreme learning machine(ELM) technology. Aiming to test the reliability of that model, 720 UCS tests with different cement-to-tailing mass ratio, solid mass concentration, fiber content, fiber length, and curing time were carried out, and a strength evaluation database was collected. The obtained results show that the optimized SSA-ELM model can accurately predict the uniaxial compressive strength of the fiber-reinforced CPB, and the model performance of SSA-ELM model is better than ANN, SVR and ELM models. Variable sensitivity analysis indicates that fiber content and fiber length have a significant effect on the UCS of fiber-reinforced CPB.展开更多
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic...Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering.展开更多
基金financial supports from the National Natural Science Foundation of China (51874350,41807259)the National Key Research and Development Program of China (2017YFC0602902)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University of China (2018zzts217)the Innovation-Driven Project of Central South University of China (2020CX040)。
文摘To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the compressive property, a new artificial intelligence model was proposed by combining a newly invented meta-heuristics algorithm(salp swarm algorithm, SSA) and extreme learning machine(ELM) technology. Aiming to test the reliability of that model, 720 UCS tests with different cement-to-tailing mass ratio, solid mass concentration, fiber content, fiber length, and curing time were carried out, and a strength evaluation database was collected. The obtained results show that the optimized SSA-ELM model can accurately predict the uniaxial compressive strength of the fiber-reinforced CPB, and the model performance of SSA-ELM model is better than ANN, SVR and ELM models. Variable sensitivity analysis indicates that fiber content and fiber length have a significant effect on the UCS of fiber-reinforced CPB.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of China
文摘Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering.