期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
异体脱钙骨基质骨粒复合骨水泥结构特征及其生物力学性能 被引量:20
1
作者 周勇 范清宇 蔡和平 《第四军医大学学报》 CAS 1999年第3期233-235,共3页
目的:分析不同复合比例的异体脱钙骨基质骨粒复合骨水泥材料扫描电镜结构特征及其抗压抗弯等生物力学性能.方法:按Urist等的方法制备异体脱钙骨基质骨粒,制备含脱钙骨基质骨粒与骨水泥质量比为0mg/g,300mg/g,400mg/g的复合材料... 目的:分析不同复合比例的异体脱钙骨基质骨粒复合骨水泥材料扫描电镜结构特征及其抗压抗弯等生物力学性能.方法:按Urist等的方法制备异体脱钙骨基质骨粒,制备含脱钙骨基质骨粒与骨水泥质量比为0mg/g,300mg/g,400mg/g的复合材料.扫描电镜观察不同复合比例材料的结构特征.Instron力学试验机测定不同比例材料抗压及抗弯等生物力学性能.结果:脱钙骨基质骨粒与骨水泥呈均匀混合分布并多点状结合;其中存在较多100μm~400μm的不规则相互连通的自然裂隙.骨粒质量比为0mg/g,300mg/g,400mg/g的材料的抗压极限强度为(59.30±2.23)MPa,(27.11±1.77)MPa,(1.28±1.63)MPa;抗弯极限强度为(64.34±3.74)MPa,(18.52±1.11)MPa,(13.28±1.42)MPa.结论:异体脱钙骨基质骨粒复合骨水泥材料具有良好的赋形性,其间存在有足够利于新骨长入的相互联通的自然裂隙及潜在的骨粒通道(骨粒可被新骨替代吸收);骨粒质量比越高,自然裂隙及骨粒通道越多.材料具有较强的抗压及抗弯生物力学性能,可提供较好的机械支持和固定作用. 展开更多
关键词 脱钙骨基质骨粒 骨水泥 抗压极限强度 生物力学
下载PDF
Artificial intelligence model for studying unconfined compressive performance of fiber-reinforced cemented paste backfill 被引量:8
2
作者 Zhi YU Xiu-zhi SHI +4 位作者 Xin CHEN Jian ZHOU Chong-chong QI Qiu-song CHEN Di-jun RAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1087-1102,共16页
To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the com... To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the compressive property, a new artificial intelligence model was proposed by combining a newly invented meta-heuristics algorithm(salp swarm algorithm, SSA) and extreme learning machine(ELM) technology. Aiming to test the reliability of that model, 720 UCS tests with different cement-to-tailing mass ratio, solid mass concentration, fiber content, fiber length, and curing time were carried out, and a strength evaluation database was collected. The obtained results show that the optimized SSA-ELM model can accurately predict the uniaxial compressive strength of the fiber-reinforced CPB, and the model performance of SSA-ELM model is better than ANN, SVR and ELM models. Variable sensitivity analysis indicates that fiber content and fiber length have a significant effect on the UCS of fiber-reinforced CPB. 展开更多
关键词 fiber-reinforced cemented paste backfill unconfined compressive strength prediction extreme learning machine salp swarm algorithm
下载PDF
Rock burst prediction based on genetic algorithms and extreme learning machine 被引量:21
3
作者 李天正 李永鑫 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2105-2113,共9页
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic... Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering. 展开更多
关键词 extreme learning machine feed forward neural network rock burst prediction rock excavation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部