由于传统的特征选取方法大多都依赖于具体的故障类型,必须根据一类或多类故障产生的样本集训练进行特征选取,所以针对某种故障选取的特征对另一种故障状态不一定也能有较好的效果。SVDD(Support Vector Data De-scription)是基于正常样...由于传统的特征选取方法大多都依赖于具体的故障类型,必须根据一类或多类故障产生的样本集训练进行特征选取,所以针对某种故障选取的特征对另一种故障状态不一定也能有较好的效果。SVDD(Support Vector Data De-scription)是基于正常样本的单值分类器,与其它分类器相比,它形成的最优分类面与具体的故障类型样本没有关系。利用这个原理,以海水泵为例提出了一种基于SVDD的特征选取新方法,通过对ROC(Rece iver Operating Characteristic)曲线的分析来完成舰船机械状态监测的特征选取工作,为了使选取的特征在复杂的舰船实际环境中也具有良好性能,还进行了特征的抗噪声鲁棒性研究。同时基于SVDD的特征选取方法还综合了分类的两种分类错误进行特征优化选取,可以更科学地为舰船机械状态监测选取较好的特征参数。展开更多