To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the ...To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.展开更多
The formulas for calculating bending-resistant capacity of a steel plate-reinforced concrete composite beam are derived. To validate the formulas, experiments of the composite beam under three-point bending are carrie...The formulas for calculating bending-resistant capacity of a steel plate-reinforced concrete composite beam are derived. To validate the formulas, experiments of the composite beam under three-point bending are carried out. Calculated results based on the formulas are in good agreement with experimental results.展开更多
Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stabilit...Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stability, ductility, as well as chemical resistance when compared with conventional concrete members. In this study, the authors evaluate the structural performance of the CFFT and the RCFFT through flexural tests for the purpose of applying the members as flexural ones. Moreover, the compressive behavior of the CFFT and the RCFFT members was investigated to examine their confinement effects. Based on the experimental and analytical results of the compressive behavior of the members, equations for estimating the ultimate compressive strengths of the CFFT and the RCFFT were proposed. In addition, the degree of improvement on the flexural performance of the RCFFT member strengthened by the FRP was analyzed from the flexural tests.展开更多
This paper deals with flexural concrete members reinforced longitudinally but without transverse reinforcement. The conducted experimental investigations have shown that beams without web reinforcement may fail withou...This paper deals with flexural concrete members reinforced longitudinally but without transverse reinforcement. The conducted experimental investigations have shown that beams without web reinforcement may fail without attaining their full flexural capacity and then shear governs their failure. In the paper, there are presented recent results of the author's own experiments, which aimed at disclosing some aspects of the propagation of cracks in longitudinally reinforced concrete beams without stirrups. The experimental program has been designed especially to investigate the influence of the shear span-to-depth ratio on diagonal crack propagation and load carrying capacity of tested beams.展开更多
Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely red...Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.展开更多
基金Projects(11832013,51878350)supported by the National Natural Science Foundation of ChinaProject(B200201063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(BK20180433)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.
文摘The formulas for calculating bending-resistant capacity of a steel plate-reinforced concrete composite beam are derived. To validate the formulas, experiments of the composite beam under three-point bending are carried out. Calculated results based on the formulas are in good agreement with experimental results.
文摘Concrete Filled FRP (Reinforced Polymeric Plastic) Tubes (CFFT) and Reinforced Concrete Filled FRP Tubes (RCFFT) are known to have the capability to enhance structural performance in terms of structural stability, ductility, as well as chemical resistance when compared with conventional concrete members. In this study, the authors evaluate the structural performance of the CFFT and the RCFFT through flexural tests for the purpose of applying the members as flexural ones. Moreover, the compressive behavior of the CFFT and the RCFFT members was investigated to examine their confinement effects. Based on the experimental and analytical results of the compressive behavior of the members, equations for estimating the ultimate compressive strengths of the CFFT and the RCFFT were proposed. In addition, the degree of improvement on the flexural performance of the RCFFT member strengthened by the FRP was analyzed from the flexural tests.
文摘This paper deals with flexural concrete members reinforced longitudinally but without transverse reinforcement. The conducted experimental investigations have shown that beams without web reinforcement may fail without attaining their full flexural capacity and then shear governs their failure. In the paper, there are presented recent results of the author's own experiments, which aimed at disclosing some aspects of the propagation of cracks in longitudinally reinforced concrete beams without stirrups. The experimental program has been designed especially to investigate the influence of the shear span-to-depth ratio on diagonal crack propagation and load carrying capacity of tested beams.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)Natural Science Foundation of Jiangsu Province(Grant No.BK2012756)+1 种基金Scientific Research Project of Ministry of Education of China(Grant No.113029A)Program for Special Talents in Six Fields of Jiangsu Province(Grant No.2011JZ010)
文摘Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.