Highly stable dispersions of nanosized copper (Cu) particles with an average size of (2.6 ± 0.5) nm were synthesized by in situ reduction of Cu(II) to immobilize Cu nanoparticles on the amino-enriched surfa...Highly stable dispersions of nanosized copper (Cu) particles with an average size of (2.6 ± 0.5) nm were synthesized by in situ reduction of Cu(II) to immobilize Cu nanoparticles on the amino-enriched surface of chitosan (CTS). The synthetic process and stability of the L-ascorbic acid-stabilized Cu-CTS nanocomposites were investigated by X-ray photoelectron spectroscopy and Fourier transform Infrared spectroscopy. The antimicrobial efficiency and potency of the Cu-CTS nanocomposites were studied. The Cu-CTS nanocomposites were found to exhibit a broad antimicrobial spectrum and high antimicrobial activity against Gram-positive bacterial pathogen Staphylococcus aureus and fungal pathogen Monilia albican. The minimum inhibitory concentration of the Cu-CTS nanocomposites toward S. aureus was found to be 6.4 μg mL^-1, much lower than those reported in the literature. Furthermore, the Cu-CTS nanocomposites were stable and main- tained good disinfection potential even after 90-day shelf-time under ambient conditions.展开更多
Microbe cement as a new bonding material is presented. Sandstone (0.05 m diameter, 0.5 m height) and sandpile (0.125 m^3) are joined by microbe cement to make a whole body. Evolutions in the related properties of ...Microbe cement as a new bonding material is presented. Sandstone (0.05 m diameter, 0.5 m height) and sandpile (0.125 m^3) are joined by microbe cement to make a whole body. Evolutions in the related properties of treated sand samples are examined through compressive strength and calcite content. Results indicate that the structure of the cemented body is nonuniform, that the calcite content decreases with distance from the injection port, and that the compressive strength also decreases with dis- tance from the injection port. In addition, evolutions in the measured calcite content and compressive strength are summarized by a numerical model that considers microbe concentration distribution. The numerical results of the calcite content at different positions for 0.5 m height sandstone are similar to the test results, and the experimental results for calcite content and compres- sive strength of 0.125 m^3 cubic sandpile are similar to the numerical results. Prediction results indicate that the simulations should become a significant supplementary tool when microbe cement is applied in actual engineering projects.展开更多
基金partially supported by theNational Natural Science Foundation of China(21173047 and21073036)
文摘Highly stable dispersions of nanosized copper (Cu) particles with an average size of (2.6 ± 0.5) nm were synthesized by in situ reduction of Cu(II) to immobilize Cu nanoparticles on the amino-enriched surface of chitosan (CTS). The synthetic process and stability of the L-ascorbic acid-stabilized Cu-CTS nanocomposites were investigated by X-ray photoelectron spectroscopy and Fourier transform Infrared spectroscopy. The antimicrobial efficiency and potency of the Cu-CTS nanocomposites were studied. The Cu-CTS nanocomposites were found to exhibit a broad antimicrobial spectrum and high antimicrobial activity against Gram-positive bacterial pathogen Staphylococcus aureus and fungal pathogen Monilia albican. The minimum inhibitory concentration of the Cu-CTS nanocomposites toward S. aureus was found to be 6.4 μg mL^-1, much lower than those reported in the literature. Furthermore, the Cu-CTS nanocomposites were stable and main- tained good disinfection potential even after 90-day shelf-time under ambient conditions.
基金supported by the National Nature Science Foundation of China(Grant No.51372038)the “333” Project of Jiangsu Province
文摘Microbe cement as a new bonding material is presented. Sandstone (0.05 m diameter, 0.5 m height) and sandpile (0.125 m^3) are joined by microbe cement to make a whole body. Evolutions in the related properties of treated sand samples are examined through compressive strength and calcite content. Results indicate that the structure of the cemented body is nonuniform, that the calcite content decreases with distance from the injection port, and that the compressive strength also decreases with dis- tance from the injection port. In addition, evolutions in the measured calcite content and compressive strength are summarized by a numerical model that considers microbe concentration distribution. The numerical results of the calcite content at different positions for 0.5 m height sandstone are similar to the test results, and the experimental results for calcite content and compres- sive strength of 0.125 m^3 cubic sandpile are similar to the numerical results. Prediction results indicate that the simulations should become a significant supplementary tool when microbe cement is applied in actual engineering projects.