Reverse_transcription Polymerase Chain Reaction (RT_PCR) was performed using cDNAs as templates from wheat_ Haynaldia villosa 6VS/6AL translocation line and 'Yangmai 5' induced with fungus Erysiphe gramin...Reverse_transcription Polymerase Chain Reaction (RT_PCR) was performed using cDNAs as templates from wheat_ Haynaldia villosa 6VS/6AL translocation line and 'Yangmai 5' induced with fungus Erysiphe graminis , and degenerate primers designed based on the conserved amino acid sequences of known plant disease_resistance genes. The cDNA sequences encoding cyclophilin_like and H +_ATPase_like genes were first isolated and characterized in wheat. The putative amino acid sequences of the two clones showed that they were highly homologous to those of cyclophilin proteins and H +_ATPases isolated from other plants. Thus they were designated as Ta_Cyp and Ta_MAH . The obvious expression differences could be observed between wheat_ H. villosa 6VS/6AL translocation line and susceptible wheat cultivar 'Yangmai 5', implying that the two genes may be related with the resistance of wheat_ H. villosa 6VS/6AL translocation line to disease. Southern blot indicated that the wheat genome contained 2-3 copies of Ta_Cyp gene and one copy of the Ta_MAH gene. Chinese Spring nulli_tetrasomic line analysis located the Ta_Cyp homologous genes on wheat chromosome 6A, 6B and 6D. Southern blot using Ta_Cyp clone as a probe showed that the polymorphic bands existed among the H. villosa , amphiploid of Triticum durum _ H. villosa , wheat_ H. villosa 6VS/6AL translocation line and 'Yangmai 5', suggesting that Ta_Cyp homologies exist in wheat genome as well as on the short arm of chromosome 6V in H. villosa .展开更多
Objective:We aimed to establish a novel strategy for identifying key genes and active anti-inflammatory ingredients in Panax medicinal plants.Methods:First,fresh roots of 2-year-old Panax plants,including P.ginseng C....Objective:We aimed to establish a novel strategy for identifying key genes and active anti-inflammatory ingredients in Panax medicinal plants.Methods:First,fresh roots of 2-year-old Panax plants,including P.ginseng C.A.Mey.,P.quinquefolium L.,P.notoginseng(Burk.)F.H.Chen,P.japonicus C.A.Mey.,P.japonicus Mey.var.major(Burk.)C.Y.Wu et K.M.Feng,were selected as explants,and callus formation was induced under three experimental temperatures(17,24,and 30℃).Second,high-performance liquid chromatography-mass spectrometry was used to analyze the saponin content of the callus.Nitric oxide reduction efficacy was used for“component-efficacy”gray correlation analysis to find the active anti-inflammatory ingredients.Quantitative reverse-transcription polymerase chain reaction(qRT-PCR)was used to determine the inflammatory factors and verify the active ingredients’anti-inflammatory effects.Finally,qRT-PCR was used to detect the expression of key genes in the callus,and“gene-component”gray correlation analysis was used to examine the relationships between the regulatory pathway of the genes and the components.Results:Among the three experimental temperatures(17,24,and 30℃),the lowest temperature(17℃)is the most suitable for generating Panax callus.Lower-latitude native Panax notoginseng is more adaptable under high culture temperatures(24℃and 30℃)than other Panax plants.The ginsenoside contents of the callus of P.notoginseng and P.japonicus were the highest under similar climate conditions(17℃).Major anti-inflammatory components were G-Rh1,G-Rb1,G-Rg3,and G-Rh6/FloralGKa.CYP76A47 contributed to the accumulation of anti-inflammatory components.Conclusions:This study provides a strategy for the gene-component-efficacy correlational study of multi-component,multi-functional,and multi-purpose plants of the same genus.展开更多
Grass carp (Ctenopharyngodon idella) is an important species of freshwater aquaculture fish in China. However, grass carp reovirus (GCRV) can cause fatal hemorrhagic disease in yearling populations. Until now, a s...Grass carp (Ctenopharyngodon idella) is an important species of freshwater aquaculture fish in China. However, grass carp reovirus (GCRV) can cause fatal hemorrhagic disease in yearling populations. Until now, a strategy to define the antigenic ca- pacity of the virus's structural proteins for preparing an effective vaccine has not been available. In this study, some sin- gle-chain variable fragment antibodies (scFv), which could specifically recognize grass carp IgM, were selected from a con- structed mouse naive antibody phage display cDNA library. The identified scFv C1B3 clone was shown to possess relatively higher specific binding activity to grass carp IgM. Furthermore, ELISA analysis indicated that the IgM level in serum from vi- rus-infected grass carp was more than two times higher than that of the control group at 5-7 days post infection. Moreover, Western blot analysis demonstrated that the outer capsid protein VP7 has a specific immuno-binding-reaction with the serum IgM from virus-infected grass carp. Our results suggest that VP7 can induce a stronger immune response in grass carp than the other GCRV structural proteins, which implies that VP7 protein could be used as a preferred immunogen for vaccine design.展开更多
文摘Reverse_transcription Polymerase Chain Reaction (RT_PCR) was performed using cDNAs as templates from wheat_ Haynaldia villosa 6VS/6AL translocation line and 'Yangmai 5' induced with fungus Erysiphe graminis , and degenerate primers designed based on the conserved amino acid sequences of known plant disease_resistance genes. The cDNA sequences encoding cyclophilin_like and H +_ATPase_like genes were first isolated and characterized in wheat. The putative amino acid sequences of the two clones showed that they were highly homologous to those of cyclophilin proteins and H +_ATPases isolated from other plants. Thus they were designated as Ta_Cyp and Ta_MAH . The obvious expression differences could be observed between wheat_ H. villosa 6VS/6AL translocation line and susceptible wheat cultivar 'Yangmai 5', implying that the two genes may be related with the resistance of wheat_ H. villosa 6VS/6AL translocation line to disease. Southern blot indicated that the wheat genome contained 2-3 copies of Ta_Cyp gene and one copy of the Ta_MAH gene. Chinese Spring nulli_tetrasomic line analysis located the Ta_Cyp homologous genes on wheat chromosome 6A, 6B and 6D. Southern blot using Ta_Cyp clone as a probe showed that the polymorphic bands existed among the H. villosa , amphiploid of Triticum durum _ H. villosa , wheat_ H. villosa 6VS/6AL translocation line and 'Yangmai 5', suggesting that Ta_Cyp homologies exist in wheat genome as well as on the short arm of chromosome 6V in H. villosa .
基金supported by National Natural Science Foundation of China grants(No.81773893)National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2017ZX09301060001)+2 种基金Hubei Province Key R&D Programme(No.2020BED017 and 2020BGB004)Jiangxi Province“Thousand Talents Plan”of Scientific and Technological Innovation(No.JXSQ2019201105)Fundamental Research Funds for the Central Universities“South-Central University for Nationalities”(No.CZP20025 and No.CZP20047)
文摘Objective:We aimed to establish a novel strategy for identifying key genes and active anti-inflammatory ingredients in Panax medicinal plants.Methods:First,fresh roots of 2-year-old Panax plants,including P.ginseng C.A.Mey.,P.quinquefolium L.,P.notoginseng(Burk.)F.H.Chen,P.japonicus C.A.Mey.,P.japonicus Mey.var.major(Burk.)C.Y.Wu et K.M.Feng,were selected as explants,and callus formation was induced under three experimental temperatures(17,24,and 30℃).Second,high-performance liquid chromatography-mass spectrometry was used to analyze the saponin content of the callus.Nitric oxide reduction efficacy was used for“component-efficacy”gray correlation analysis to find the active anti-inflammatory ingredients.Quantitative reverse-transcription polymerase chain reaction(qRT-PCR)was used to determine the inflammatory factors and verify the active ingredients’anti-inflammatory effects.Finally,qRT-PCR was used to detect the expression of key genes in the callus,and“gene-component”gray correlation analysis was used to examine the relationships between the regulatory pathway of the genes and the components.Results:Among the three experimental temperatures(17,24,and 30℃),the lowest temperature(17℃)is the most suitable for generating Panax callus.Lower-latitude native Panax notoginseng is more adaptable under high culture temperatures(24℃and 30℃)than other Panax plants.The ginsenoside contents of the callus of P.notoginseng and P.japonicus were the highest under similar climate conditions(17℃).Major anti-inflammatory components were G-Rh1,G-Rb1,G-Rg3,and G-Rh6/FloralGKa.CYP76A47 contributed to the accumulation of anti-inflammatory components.Conclusions:This study provides a strategy for the gene-component-efficacy correlational study of multi-component,multi-functional,and multi-purpose plants of the same genus.
基金supported by the National Basic Research Program of China (2009CB118701,2009CB118704)the National Natural Science Foundation of China (31072233,31172434)
文摘Grass carp (Ctenopharyngodon idella) is an important species of freshwater aquaculture fish in China. However, grass carp reovirus (GCRV) can cause fatal hemorrhagic disease in yearling populations. Until now, a strategy to define the antigenic ca- pacity of the virus's structural proteins for preparing an effective vaccine has not been available. In this study, some sin- gle-chain variable fragment antibodies (scFv), which could specifically recognize grass carp IgM, were selected from a con- structed mouse naive antibody phage display cDNA library. The identified scFv C1B3 clone was shown to possess relatively higher specific binding activity to grass carp IgM. Furthermore, ELISA analysis indicated that the IgM level in serum from vi- rus-infected grass carp was more than two times higher than that of the control group at 5-7 days post infection. Moreover, Western blot analysis demonstrated that the outer capsid protein VP7 has a specific immuno-binding-reaction with the serum IgM from virus-infected grass carp. Our results suggest that VP7 can induce a stronger immune response in grass carp than the other GCRV structural proteins, which implies that VP7 protein could be used as a preferred immunogen for vaccine design.