The degradation behaviors(mass loss,tensile strength,crystallinity index,and microstructure)of sisal fibers immersed in sodium hydroxide solution with pH of 13.6,12.9,and 11.9 were investigated via X-ray diffraction a...The degradation behaviors(mass loss,tensile strength,crystallinity index,and microstructure)of sisal fibers immersed in sodium hydroxide solution with pH of 13.6,12.9,and 11.9 were investigated via X-ray diffraction and scanning electron microscopy.A three-stage degradation process of natural fibers in an alkaline environment was proposed.The results showed that the sisal fibers exhibited a sharp mass loss over the first 7 d of degradation under all pH conditions,attributable to the rapid hydrolysis of lignin and hemicellulose at the fiber surface.The sisal fibers degraded at pH 12.9 and 13.6 over 1 month exhibited significantly lower tensile strengths(181 and 195 MPa,respectively)than the original fibers(234 MPa)because of the loosely bound structure of the component microfibrils caused by the hydrolysis of the linking lignin and hemicellulose.After 6-month degradation,stripped microfibrils occurred in the fibers,resulting in substantial degradation in tensile strength.The sisal fibers degraded at pH 11.9 largely maintained their integrity and tensile strength,even after 6 months,indicating that reducing the environment pH can effectively mitigate the degradation.展开更多
Similar friction welded joints of AA-7005 aluminum rods were fabricated using different combinations of process parameters such as friction pressure(1.0, 1.5 and 2.0 MPa) and friction time(10, 15 and 20 s). Interfacia...Similar friction welded joints of AA-7005 aluminum rods were fabricated using different combinations of process parameters such as friction pressure(1.0, 1.5 and 2.0 MPa) and friction time(10, 15 and 20 s). Interfacial microstructure and formation of intermetallic compounds at the joint interface were evaluated via scanning electron microscopy(SEM) equipped with energy dispersive spectrum(EDS), and optical microscopy(OM). Microstructural observations reveal the formation of intermetallic phases during the welding process which cannot be extruded from the interface. Theses phases influence the tensile strength of the resultant joints. From the tensile characteristics viewpoint, the greatest tensile strength value of 365 MPa is obtained at 1.5 MPa and 15 s. Finally, the role of microstructural features on tensile strength of resultant joints is discussed.展开更多
In this work,DIFT technology and Q&P process were combined in order to introduce ultrafine-grained ferrite into the matrix of martensite and retained austenite to develop a new kind of advanced high strength steel...In this work,DIFT technology and Q&P process were combined in order to introduce ultrafine-grained ferrite into the matrix of martensite and retained austenite to develop a new kind of advanced high strength steel,and two kinds of steels were investigated by this novel combined process.The newly designed process resulted in a sophisticated microstructure of a large amount of ferrite(about 5 m in diameter),martensite and a considerable amount of retained austenite for TRIP 780 steel.The ultimate tensile strength can reach about 1200 MPa with elongation above 16% for TRIP 780,that is much higher than the one solely treated by Q&P process.Tensile tests showed that both steels with the novel combined process achieved a good combination of strength and ductility,indicating that the new process is promising for the new generation of advanced high strength steels.展开更多
基金The Natural Science Foundation of China(No.52108191)the China Postdoctoral Science Foundation(No.2021M690622)+2 种基金the Changzhou Sci&Tech Program(No.CJ20210153,CE20205050)the Qing Lan Project of Jiangsuthe Young Sci-tech Talents Promoting Project of Changzhou。
文摘The degradation behaviors(mass loss,tensile strength,crystallinity index,and microstructure)of sisal fibers immersed in sodium hydroxide solution with pH of 13.6,12.9,and 11.9 were investigated via X-ray diffraction and scanning electron microscopy.A three-stage degradation process of natural fibers in an alkaline environment was proposed.The results showed that the sisal fibers exhibited a sharp mass loss over the first 7 d of degradation under all pH conditions,attributable to the rapid hydrolysis of lignin and hemicellulose at the fiber surface.The sisal fibers degraded at pH 12.9 and 13.6 over 1 month exhibited significantly lower tensile strengths(181 and 195 MPa,respectively)than the original fibers(234 MPa)because of the loosely bound structure of the component microfibrils caused by the hydrolysis of the linking lignin and hemicellulose.After 6-month degradation,stripped microfibrils occurred in the fibers,resulting in substantial degradation in tensile strength.The sisal fibers degraded at pH 11.9 largely maintained their integrity and tensile strength,even after 6 months,indicating that reducing the environment pH can effectively mitigate the degradation.
文摘Similar friction welded joints of AA-7005 aluminum rods were fabricated using different combinations of process parameters such as friction pressure(1.0, 1.5 and 2.0 MPa) and friction time(10, 15 and 20 s). Interfacial microstructure and formation of intermetallic compounds at the joint interface were evaluated via scanning electron microscopy(SEM) equipped with energy dispersive spectrum(EDS), and optical microscopy(OM). Microstructural observations reveal the formation of intermetallic phases during the welding process which cannot be extruded from the interface. Theses phases influence the tensile strength of the resultant joints. From the tensile characteristics viewpoint, the greatest tensile strength value of 365 MPa is obtained at 1.5 MPa and 15 s. Finally, the role of microstructural features on tensile strength of resultant joints is discussed.
基金supported by the National Engineering Research Center of Advanced Steel Technology (NERCAST)the National Basic Research Program of China "973 Program" (Grant No. 2010CB630803)the National Natural Science Foundation of China (Grant No. 51174251)
文摘In this work,DIFT technology and Q&P process were combined in order to introduce ultrafine-grained ferrite into the matrix of martensite and retained austenite to develop a new kind of advanced high strength steel,and two kinds of steels were investigated by this novel combined process.The newly designed process resulted in a sophisticated microstructure of a large amount of ferrite(about 5 m in diameter),martensite and a considerable amount of retained austenite for TRIP 780 steel.The ultimate tensile strength can reach about 1200 MPa with elongation above 16% for TRIP 780,that is much higher than the one solely treated by Q&P process.Tensile tests showed that both steels with the novel combined process achieved a good combination of strength and ductility,indicating that the new process is promising for the new generation of advanced high strength steels.