A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can main...A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.展开更多
The purpose of this paper is to design a neuron adaptive PID controller based on the theory of intelligent control of the extens- ive research on the characteristics of neuronss, neurons and PID controller. Artificial...The purpose of this paper is to design a neuron adaptive PID controller based on the theory of intelligent control of the extens- ive research on the characteristics of neuronss, neurons and PID controller. Artificial neurons have the adaptive, parallel processing, selflearning learning, and mare fault-tolerant characteristics. When the artificial neurons are used to control the process, the syste^n will enabled to en-sure that the accused has strong anti-interference capability and ro. bustness.展开更多
A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation...A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.展开更多
The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times i...The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times is a challenging matter. The proposed control method is an I-P modi fied controller automatic control system with state variable feedback and control canonical form simulation diagram for the process. A more stable response is achieved with this type of modern control. Settling times of 0.48 days are achieved for the concentration of microorganisms,(reference value step increase of 50 mg·L-1) and 0.01 days for the concentration of oxygen(reference value step increase of 0.1 mg·L-1). Fluctuations of concentrations of oxygen and microorganisms after an inlet disturbance of5 × 103m3·d-1are small. Changes in the reference values of oxygen and microorganisms(increases by 10%, 20% and 30%) show satisfactory response of the system in all cases. Changes in the value of inlet wastewater flow rate disturbance(increases by 10%, 25%, 50% and 100%) are stabilized by the control system in short time. Maximum percent overshoot is also taken in consideration in all cases and the largest value is 25% which is acceptable. The proposed method with I-P controller is better for disturbance rejection and process settling times compared to the same method using PI controller. This method can substitute optimal control systems in ASP.展开更多
In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However...In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However,strong external disturbances,such as variations of ore hardness and ore size,always exist.It is not easy to make the current of Raymond mill constant due to these strong disturbances.Several control strategies have been proposed to control the grinding processes.However,most of them(such as PID and MPC)reject disturbances merely through feedback regulation and do not deal with the disturbances directly,which may lead to poor control performance when strong disturbances occur.To improve disturbance rejection performance,a control scheme based on PI and disturbance observer is proposed in this work.The scheme combines a feedforward compensation part based on disturbance observer and a feedback regulation part using PI.The test results illustrate that the proposed method can obtain remarkable superiority in disturbance rejection compared with PI method in the Raymond mill grinding processes.展开更多
A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed loc...A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed location or pre-determined track) exclu- sively by means of active thrusters. The development of control technology promotes the upgrading of dynamic positioning (DP) systems. Today there are two different DP systems solutions available on the market: DP system based on PID regulator and that based on model-based control. Both systems have limited disturbance rejection capability due to their design principle. In this paper, a new DP system solution is proposed based on Active Dis^n'bance Rejection Control (ADRC) technology. This technology is com- posed of Tracking-Differentiator (TD), Extended State Observer (ESO) and Nonlinear Feedback Combination. On one hand, both TD and ESO can act as filters and can be used in place of conventional filters; on the other hand, the total disturbance of the system can be estimated and compensated by ESO, which therefore enhances the system's disturbance rejection capability. This technology's advantages over other methods lie in two aspects: 1) This method itself can not only achieve control objectives but also filter noisy measurements without other specialized filters; 2) This method offers a new useful approach to suppress the ocean disturbance. The simulation results demonstrate the effectiveness of the proposed method.展开更多
A new direct-lift control carrier landing mode is advanced, and it is proved to be very effective to keep the attitude angle and path angle constant when the aircraft is in the blind area of tracking radar and the gui...A new direct-lift control carrier landing mode is advanced, and it is proved to be very effective to keep the attitude angle and path angle constant when the aircraft is in the blind area of tracking radar and the guidance system is shut off. The direct-lift control mode is achieved with the symmetric deflection of the flaps and dynamic decoupling for minor disturbance of the angle of attack. This mode changes an aircraft' s model from a short-period oscillation model to a non-oscillation one, which could evidently increase the gust-rejection capability of the aircraft.展开更多
基金Project(2011AA11A10102) supported by the High-tech Research and Development Program of China
文摘A sliding mode and active disturbance rejection control(SM-ADRC)was employed to regulate the speed of a permanent magnet synchronous motor(PMSM).The major advantages of the proposed control scheme are that it can maintain the original features of ADRC and make the parameters of ADRC transition smoothly.The proposed control scheme also ensures speed control accuracy and improves the robustness and anti-load disturbance ability of the system.Moreover,through the analysis of a d-axis current output equation,a novel current-loop SM-ADRC is presented to improve the system’s dynamic performance and inner ability of anti-load disturbance.Results of a simulation and experiments show that the improved sliding-mode ADRC system has the advantages of fast response,small overshoot,small steady-state error,wide speed range and high control accuracy.It shows that the system has strong anti-interference ability to reduce the influence of variations in rotational inertia,load and internal parameters.
文摘The purpose of this paper is to design a neuron adaptive PID controller based on the theory of intelligent control of the extens- ive research on the characteristics of neuronss, neurons and PID controller. Artificial neurons have the adaptive, parallel processing, selflearning learning, and mare fault-tolerant characteristics. When the artificial neurons are used to control the process, the syste^n will enabled to en-sure that the accused has strong anti-interference capability and ro. bustness.
基金Project(51005251)supported by the National Natural Science Foundation of ChinaProject(2011CB706802)supported by the National Basic Research Development Program of China(973 Program)
文摘A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.
文摘The Activated Sludge Process(ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times is a challenging matter. The proposed control method is an I-P modi fied controller automatic control system with state variable feedback and control canonical form simulation diagram for the process. A more stable response is achieved with this type of modern control. Settling times of 0.48 days are achieved for the concentration of microorganisms,(reference value step increase of 50 mg·L-1) and 0.01 days for the concentration of oxygen(reference value step increase of 0.1 mg·L-1). Fluctuations of concentrations of oxygen and microorganisms after an inlet disturbance of5 × 103m3·d-1are small. Changes in the reference values of oxygen and microorganisms(increases by 10%, 20% and 30%) show satisfactory response of the system in all cases. Changes in the value of inlet wastewater flow rate disturbance(increases by 10%, 25%, 50% and 100%) are stabilized by the control system in short time. Maximum percent overshoot is also taken in consideration in all cases and the largest value is 25% which is acceptable. The proposed method with I-P controller is better for disturbance rejection and process settling times compared to the same method using PI controller. This method can substitute optimal control systems in ASP.
基金Projects(61504027,61573099)supported by the National Natural Science Foundation of ChinaProject(BK20140647)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However,strong external disturbances,such as variations of ore hardness and ore size,always exist.It is not easy to make the current of Raymond mill constant due to these strong disturbances.Several control strategies have been proposed to control the grinding processes.However,most of them(such as PID and MPC)reject disturbances merely through feedback regulation and do not deal with the disturbances directly,which may lead to poor control performance when strong disturbances occur.To improve disturbance rejection performance,a control scheme based on PI and disturbance observer is proposed in this work.The scheme combines a feedforward compensation part based on disturbance observer and a feedback regulation part using PI.The test results illustrate that the proposed method can obtain remarkable superiority in disturbance rejection compared with PI method in the Raymond mill grinding processes.
基金The support of the National Nature Science Foundation of China(Nos.61074053 and 61374114)the Applied Basic Research Program of Ministry of Transport of China(No.2011-329-225-390)are gratefully acknowledged
文摘A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed location or pre-determined track) exclu- sively by means of active thrusters. The development of control technology promotes the upgrading of dynamic positioning (DP) systems. Today there are two different DP systems solutions available on the market: DP system based on PID regulator and that based on model-based control. Both systems have limited disturbance rejection capability due to their design principle. In this paper, a new DP system solution is proposed based on Active Dis^n'bance Rejection Control (ADRC) technology. This technology is com- posed of Tracking-Differentiator (TD), Extended State Observer (ESO) and Nonlinear Feedback Combination. On one hand, both TD and ESO can act as filters and can be used in place of conventional filters; on the other hand, the total disturbance of the system can be estimated and compensated by ESO, which therefore enhances the system's disturbance rejection capability. This technology's advantages over other methods lie in two aspects: 1) This method itself can not only achieve control objectives but also filter noisy measurements without other specialized filters; 2) This method offers a new useful approach to suppress the ocean disturbance. The simulation results demonstrate the effectiveness of the proposed method.
基金Sponsored by the Aviation Science Foundation(Grant No. 01E52028)the National S-863 Plan-study of the AeronauticsAstronautics Foundational Techniques
文摘A new direct-lift control carrier landing mode is advanced, and it is proved to be very effective to keep the attitude angle and path angle constant when the aircraft is in the blind area of tracking radar and the guidance system is shut off. The direct-lift control mode is achieved with the symmetric deflection of the flaps and dynamic decoupling for minor disturbance of the angle of attack. This mode changes an aircraft' s model from a short-period oscillation model to a non-oscillation one, which could evidently increase the gust-rejection capability of the aircraft.