A S-containing additive, sulfuration modified rapeseed oil (named as SRO), was prepared by chemical modification of rapeseed oil with sulfur compounds. The results indicate that the friction and wear of the magnesiu...A S-containing additive, sulfuration modified rapeseed oil (named as SRO), was prepared by chemical modification of rapeseed oil with sulfur compounds. The results indicate that the friction and wear of the magnesium alloy-steel tribomates could be effectively reduced by formulating SRO into rapeseed oil lubricant. The friction coefficients and the wear volumes of magnesium alloy decrease with increasing contents of SRO. The surface lubricated with SRO-doped rapeseed oil was characterized by less wear as compared with that lubricated with neat rapeseed oil. The enhanced anti-wear and friction-reducing abilities of rapeseed oil by SRO in the lubrication of magnesium alloy against steel were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of SRO and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with magnesium alloy.展开更多
Aluminium matrix composite reinforced by Al2O3 particles was produced by adding NH4AlO(OH)HCO3 into molten aluminum.The mechanical properties and wear behavior of the as-fabricated composites were studied.The result...Aluminium matrix composite reinforced by Al2O3 particles was produced by adding NH4AlO(OH)HCO3 into molten aluminum.The mechanical properties and wear behavior of the as-fabricated composites were studied.The results show that during stirring γ-Al2O3 particles were formed via decomposition reaction of NH4AlO(OH)HCO3,and the distribution of Al2O3 particles is more uniform in the matrix aluminum than directly added Al2O3 into molten aluminum.The density and the hardness values of the as-fabricated composites increase with increasing the particle volume fraction,while the tensile strength of the composites decreases with increasing the volume fraction of the Al2O3 particles.The wear rate of the composites decreases with increasing the volume fraction of the particle and loading.The in situ formed Al2O3/Al composite by adding NH4AlO(OH)HCO3 shows more superior mechanical and wear behaviors than that prepared by directly adding Al2O3 particles.展开更多
This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their appl...This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.展开更多
This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used f...This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used for joining of acrylonitrile butadiene styrene(ABS)composites.The dissimilar thermoplastics were processed for maintaining a useful range of melt flow properties followed by preparation of feed stock filament for fused deposition modeling(FDM)process through screw extrusion.Finally,3D printed PA6 based consumable rapid tool(RT)was prepared for MFSW.The joints prepared were subjected to flexural,hardness,morphological and thermal testing.The study has suggested the that maximum mechanical strength was obtained for sample welded at 1400 r/min,50 mm/min transverse speed and 3 mm plunge depth,whereas the minimum mechanical strength was obtained for sample welded at 1000 r/min,30 mm/min transverse speed and 2 mm plunge depth.The results are also supported with thermal analysis and photomicrographs.展开更多
In recent years the application of friction-based passive energy dissipation devices have been proven very effective in reducing structural response to earthquake excitations and also implemented for a large number of...In recent years the application of friction-based passive energy dissipation devices have been proven very effective in reducing structural response to earthquake excitations and also implemented for a large number of buildings. Their design heavily relies on numerical simulations to model the influence of the energy dissipation devices. The modeling of friction forces must be accurate for realistic simulation of the influence of these devices. In state-of-the-practice, the hysteretic behavior of friction devices has been typically modeled with Coulomb friction having a constant coefficient of friction. However, the basic laws for typical sliding materials and experimental investigations show non-linear relationship between friction and sliding velocity, which includes stiction and Stribeck effect. The influence of stiction and Stribeck effect may be significant and can not be ignored in simulating the dynamic responses of structures with friction-based energy dissipation devices. In this paper the optimal performance of dry friction device in shear-frame buildings when subjected to earthquake ground motions has been investigated. The focus of this paper is on the optimal minimization of response of the shear-frame building. Since buildings with friction devices behave in a highly nonlinear manner, nonlinear response-history analysis considering comprehensive sliding friction models has been carried out. The performance has also been evaluated using the various response measures: the maximum absolute acceleration, the maximum base shear, and the maximum inter-story drift. Different performance indices have been used to quantify the influence of the device properties.展开更多
In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences o...In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.展开更多
The Pomegranate (Punica Granatum), which belongs tothe Lythraceae family, has been used for centuries in traditional Greco-Arab and Islamic medicine of its vermifuge properties and also to treat various diseases. Th...The Pomegranate (Punica Granatum), which belongs tothe Lythraceae family, has been used for centuries in traditional Greco-Arab and Islamic medicine of its vermifuge properties and also to treat various diseases. The aim of this research was to investigate the cytotoxicity and antioxidant activities of Moroccan Pomegranate (peel, leaves, branches, flowers and corolla). Further, the biological activities were correlated with phytochemical contents of the plant extracts. Methanolic extract from different parts of Punica Granatum was assessed for its antiproliferative activity in two human cancer (breast and colon) cells lines (MBA-MD 231 and HT-29), through MTT (3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) bioassay using cell viability and cytotoxicity indices. DPPH (2,2-diphenyl-l-picrylhydrazyl) assay was conducted to screen the antioxidant property of the extracts together with its phenolic and flavonoids content were evaluated, as well. The methanolic extract ofPunica Granatum (peel, leaves, branches, flowers and corolla) showed the highest antiproliferative activity on MBA-MD 231 (IC50 was 133.53-233.32 μg/mL) and HT-29 (IC50 was 127.58-203.24 μg/mL) cells. Antioxidants contents are distributed as follows: peel 〉 leaf 〉 flower 〉 corolla 〉 branches. The inhibitory activities required for decreasing initial DPPH by 50% are 8.27, 9.9, 10.06, 11.67 and 13.28 μg/mL, respectively. These results are in correlation with polyphenols content from corolla, peel, leaves, flower and branches are 120.7, 115, 96.65, 90.73 and 64.67 mg GAE/g dw (mg gallic acid equivalents per g dry weight) and flavonoids are 188.8, 221.7, 180.2, 193.7 and 158.5 mg QE/g dw (mg quercetin equivalents per g dry weight). Our results show that the peel, flowers, corolla, leaves and branches of Moroccan Pomegranate may contain a lot of bioactive compounds which are responsible for strong antioxidant and cytotoxicity activities observed here. Our finding indicates the possibility of using the extracts of this plant as source of natural antioxidant and anticancer mainly for its abundant phenolic and flavonoid contents.展开更多
A new laboratory evaluation method for the coating blade was developed, and the tribological properties of coating blades with different Ti-based coatings were studied by UMT-2 tribometer. Comparison between the areas...A new laboratory evaluation method for the coating blade was developed, and the tribological properties of coating blades with different Ti-based coatings were studied by UMT-2 tribometer. Comparison between the areas of scratches before and after the cutting experiment was used to evaluate the cutting performance of the blades. Results showed that friction coefficient of TiA1CrN/TiA1N coating was significantly lower than that of TiA1SiN coating. Analysis of the worn surface revealed that the TiA1SiN and TiAICrN/TiA1N coatings in the dry turning process exhibited sign of inhornogeneous adhesive wear and abrasive wear. TiA1CrN/TiA1N coating has a longer working life and better anti-wear property because of its duplex coating.展开更多
基金Project (50975282) supported by the National Natural Science Foundation of China
文摘A S-containing additive, sulfuration modified rapeseed oil (named as SRO), was prepared by chemical modification of rapeseed oil with sulfur compounds. The results indicate that the friction and wear of the magnesium alloy-steel tribomates could be effectively reduced by formulating SRO into rapeseed oil lubricant. The friction coefficients and the wear volumes of magnesium alloy decrease with increasing contents of SRO. The surface lubricated with SRO-doped rapeseed oil was characterized by less wear as compared with that lubricated with neat rapeseed oil. The enhanced anti-wear and friction-reducing abilities of rapeseed oil by SRO in the lubrication of magnesium alloy against steel were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of SRO and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with magnesium alloy.
基金Project(2009BAE80B01)supported by the Ministry of Science and Technology,China
文摘Aluminium matrix composite reinforced by Al2O3 particles was produced by adding NH4AlO(OH)HCO3 into molten aluminum.The mechanical properties and wear behavior of the as-fabricated composites were studied.The results show that during stirring γ-Al2O3 particles were formed via decomposition reaction of NH4AlO(OH)HCO3,and the distribution of Al2O3 particles is more uniform in the matrix aluminum than directly added Al2O3 into molten aluminum.The density and the hardness values of the as-fabricated composites increase with increasing the particle volume fraction,while the tensile strength of the composites decreases with increasing the volume fraction of the Al2O3 particles.The wear rate of the composites decreases with increasing the volume fraction of the particle and loading.The in situ formed Al2O3/Al composite by adding NH4AlO(OH)HCO3 shows more superior mechanical and wear behaviors than that prepared by directly adding Al2O3 particles.
基金Projects(51775365,51405329) supported by the National Natural Science Foundation of ChinaProject(2015M570239) supported by the China Postdoctoral Science Foundation
文摘This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.
文摘This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used for joining of acrylonitrile butadiene styrene(ABS)composites.The dissimilar thermoplastics were processed for maintaining a useful range of melt flow properties followed by preparation of feed stock filament for fused deposition modeling(FDM)process through screw extrusion.Finally,3D printed PA6 based consumable rapid tool(RT)was prepared for MFSW.The joints prepared were subjected to flexural,hardness,morphological and thermal testing.The study has suggested the that maximum mechanical strength was obtained for sample welded at 1400 r/min,50 mm/min transverse speed and 3 mm plunge depth,whereas the minimum mechanical strength was obtained for sample welded at 1000 r/min,30 mm/min transverse speed and 2 mm plunge depth.The results are also supported with thermal analysis and photomicrographs.
文摘In recent years the application of friction-based passive energy dissipation devices have been proven very effective in reducing structural response to earthquake excitations and also implemented for a large number of buildings. Their design heavily relies on numerical simulations to model the influence of the energy dissipation devices. The modeling of friction forces must be accurate for realistic simulation of the influence of these devices. In state-of-the-practice, the hysteretic behavior of friction devices has been typically modeled with Coulomb friction having a constant coefficient of friction. However, the basic laws for typical sliding materials and experimental investigations show non-linear relationship between friction and sliding velocity, which includes stiction and Stribeck effect. The influence of stiction and Stribeck effect may be significant and can not be ignored in simulating the dynamic responses of structures with friction-based energy dissipation devices. In this paper the optimal performance of dry friction device in shear-frame buildings when subjected to earthquake ground motions has been investigated. The focus of this paper is on the optimal minimization of response of the shear-frame building. Since buildings with friction devices behave in a highly nonlinear manner, nonlinear response-history analysis considering comprehensive sliding friction models has been carried out. The performance has also been evaluated using the various response measures: the maximum absolute acceleration, the maximum base shear, and the maximum inter-story drift. Different performance indices have been used to quantify the influence of the device properties.
基金Project(51308549)supported by the National Natural Science Foundation,China
文摘In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.
文摘The Pomegranate (Punica Granatum), which belongs tothe Lythraceae family, has been used for centuries in traditional Greco-Arab and Islamic medicine of its vermifuge properties and also to treat various diseases. The aim of this research was to investigate the cytotoxicity and antioxidant activities of Moroccan Pomegranate (peel, leaves, branches, flowers and corolla). Further, the biological activities were correlated with phytochemical contents of the plant extracts. Methanolic extract from different parts of Punica Granatum was assessed for its antiproliferative activity in two human cancer (breast and colon) cells lines (MBA-MD 231 and HT-29), through MTT (3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) bioassay using cell viability and cytotoxicity indices. DPPH (2,2-diphenyl-l-picrylhydrazyl) assay was conducted to screen the antioxidant property of the extracts together with its phenolic and flavonoids content were evaluated, as well. The methanolic extract ofPunica Granatum (peel, leaves, branches, flowers and corolla) showed the highest antiproliferative activity on MBA-MD 231 (IC50 was 133.53-233.32 μg/mL) and HT-29 (IC50 was 127.58-203.24 μg/mL) cells. Antioxidants contents are distributed as follows: peel 〉 leaf 〉 flower 〉 corolla 〉 branches. The inhibitory activities required for decreasing initial DPPH by 50% are 8.27, 9.9, 10.06, 11.67 and 13.28 μg/mL, respectively. These results are in correlation with polyphenols content from corolla, peel, leaves, flower and branches are 120.7, 115, 96.65, 90.73 and 64.67 mg GAE/g dw (mg gallic acid equivalents per g dry weight) and flavonoids are 188.8, 221.7, 180.2, 193.7 and 158.5 mg QE/g dw (mg quercetin equivalents per g dry weight). Our results show that the peel, flowers, corolla, leaves and branches of Moroccan Pomegranate may contain a lot of bioactive compounds which are responsible for strong antioxidant and cytotoxicity activities observed here. Our finding indicates the possibility of using the extracts of this plant as source of natural antioxidant and anticancer mainly for its abundant phenolic and flavonoid contents.
基金supported by the National Natural Science Foundation of China(Grant No.51075308)
文摘A new laboratory evaluation method for the coating blade was developed, and the tribological properties of coating blades with different Ti-based coatings were studied by UMT-2 tribometer. Comparison between the areas of scratches before and after the cutting experiment was used to evaluate the cutting performance of the blades. Results showed that friction coefficient of TiA1CrN/TiA1N coating was significantly lower than that of TiA1SiN coating. Analysis of the worn surface revealed that the TiA1SiN and TiAICrN/TiA1N coatings in the dry turning process exhibited sign of inhornogeneous adhesive wear and abrasive wear. TiA1CrN/TiA1N coating has a longer working life and better anti-wear property because of its duplex coating.