Many studies on oxidative stress,insulin resistance,and antioxidant treatment have shown that increased oxidative stress may accelerate the development of diabetic complications through the excessive glucose and free ...Many studies on oxidative stress,insulin resistance,and antioxidant treatment have shown that increased oxidative stress may accelerate the development of diabetic complications through the excessive glucose and free fatty acids metabolism in diabetic and insulin-resistant states.Many pathogenic mechanisms such as insulin receptor substrate phosphorylation are involved in insulin resistance induced by oxidative stress.And antioxidant treatments can show benefits in animal models of diabetes mellitus and insulin resistance.However,negative evidence from large clinical trials suggests that new and more powerful antioxidants need to be studied to demonstrate whether antioxidants can be effective in treating diabetic complications.Furthermore,it appears that oxidative stress is only one of the factors contributing to diabetic complications.Thus,antioxidant treatment would most likely be more effective if it were coupled with other treatments for diabetic complications.展开更多
Achillea millefolium (Asteraceae) is a permanent herb highly recognized in traditional medicine for its anti-oxidant and anti-inflammation properties. However, studies on phytochemical constituents of A. millefoli...Achillea millefolium (Asteraceae) is a permanent herb highly recognized in traditional medicine for its anti-oxidant and anti-inflammation properties. However, studies on phytochemical constituents of A. millefolium underlying these properties are scarce. The present work focuses on examining the effect of methanol extract of A. millefolium L. on total and differential blood cells account on albino male mice. The results showed the methanol extract increased the account of lymphocyte, and monocyte cells, and total account as well as this extract showed high decrease in the oxidative stress of MTX after the interfere between the extract and MTX due to increase in the leucocyte cells compared with controls. Concluded from these results that methanol extract of A. millefolium has ability enhancement in leucocyte cells in the blood and it has detoxification effect of MTX.展开更多
The present study was designed to establish and optimize a new method for extracting chlorogenic acid and cynaroside from Lonicera japonica Thunb. through orthogonal experimental designl. A new ultrahigh pressure extr...The present study was designed to establish and optimize a new method for extracting chlorogenic acid and cynaroside from Lonicera japonica Thunb. through orthogonal experimental designl. A new ultrahigh pressure extraction (UPE) technology was applied to extract chlorogenic acid and cynaroside from L. japonica. The influential factors, including solvent type, ethanol concentration, extraction pressure, time, and temperature, and the solid/liquid ratio, have been studied to optimize the extraction process, The optimal conditions for the UPE were developed by quantitative analysis of the extraction products by HPLC-DAD in comparison with standard samples. In addition, the microstructures of the medicinal materials before and after extraction were studied by scanning electron microscopy (SEM). Furthermore, the extraction efficiency of different extraction methods and the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of the extracts were investigated. The optimal conditions for extracting chlorogenic acid and cynaroside were as follows: ethanol concentration, 60%; extraction pressure, 400 MPa; extraction time, 2 rain; extraction temperature, 30 ℃; and the solid/liquid ratio, 1 : 50. Under these conditions, the yields of chlorogenic acid and cynaroside were raised to 4.863% and 0.080%, respectively. Compared with other extraction methods, such as heat reflux extraction (HRE), ultrasonic extraction (UE), and Sohxlet extraction (SE), the UPE method showed several advantages, including higher extraction yield, shorter extraction time, lower energy consumption, and higher purity of the extracts. This study could help better utilize L. japonica flower buds as a readily accessible source of natural antioxidants in food and pharmaceutical industries.展开更多
基金Supported by grant from the National Basic Research Program (973Program) (2006CB503903)
文摘Many studies on oxidative stress,insulin resistance,and antioxidant treatment have shown that increased oxidative stress may accelerate the development of diabetic complications through the excessive glucose and free fatty acids metabolism in diabetic and insulin-resistant states.Many pathogenic mechanisms such as insulin receptor substrate phosphorylation are involved in insulin resistance induced by oxidative stress.And antioxidant treatments can show benefits in animal models of diabetes mellitus and insulin resistance.However,negative evidence from large clinical trials suggests that new and more powerful antioxidants need to be studied to demonstrate whether antioxidants can be effective in treating diabetic complications.Furthermore,it appears that oxidative stress is only one of the factors contributing to diabetic complications.Thus,antioxidant treatment would most likely be more effective if it were coupled with other treatments for diabetic complications.
文摘Achillea millefolium (Asteraceae) is a permanent herb highly recognized in traditional medicine for its anti-oxidant and anti-inflammation properties. However, studies on phytochemical constituents of A. millefolium underlying these properties are scarce. The present work focuses on examining the effect of methanol extract of A. millefolium L. on total and differential blood cells account on albino male mice. The results showed the methanol extract increased the account of lymphocyte, and monocyte cells, and total account as well as this extract showed high decrease in the oxidative stress of MTX after the interfere between the extract and MTX due to increase in the leucocyte cells compared with controls. Concluded from these results that methanol extract of A. millefolium has ability enhancement in leucocyte cells in the blood and it has detoxification effect of MTX.
基金supported by the PAPD(A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions)
文摘The present study was designed to establish and optimize a new method for extracting chlorogenic acid and cynaroside from Lonicera japonica Thunb. through orthogonal experimental designl. A new ultrahigh pressure extraction (UPE) technology was applied to extract chlorogenic acid and cynaroside from L. japonica. The influential factors, including solvent type, ethanol concentration, extraction pressure, time, and temperature, and the solid/liquid ratio, have been studied to optimize the extraction process, The optimal conditions for the UPE were developed by quantitative analysis of the extraction products by HPLC-DAD in comparison with standard samples. In addition, the microstructures of the medicinal materials before and after extraction were studied by scanning electron microscopy (SEM). Furthermore, the extraction efficiency of different extraction methods and the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of the extracts were investigated. The optimal conditions for extracting chlorogenic acid and cynaroside were as follows: ethanol concentration, 60%; extraction pressure, 400 MPa; extraction time, 2 rain; extraction temperature, 30 ℃; and the solid/liquid ratio, 1 : 50. Under these conditions, the yields of chlorogenic acid and cynaroside were raised to 4.863% and 0.080%, respectively. Compared with other extraction methods, such as heat reflux extraction (HRE), ultrasonic extraction (UE), and Sohxlet extraction (SE), the UPE method showed several advantages, including higher extraction yield, shorter extraction time, lower energy consumption, and higher purity of the extracts. This study could help better utilize L. japonica flower buds as a readily accessible source of natural antioxidants in food and pharmaceutical industries.