Mud crab (Scylla serrata) is an important commercial crustacean in China. An experiment was designed to study the effect of cold stress on S. serrata. After a one-week adaptation at 28℃, the temperature is suddenly...Mud crab (Scylla serrata) is an important commercial crustacean in China. An experiment was designed to study the effect of cold stress on S. serrata. After a one-week adaptation at 28℃, the temperature is suddenly reduced to 4℃. The crabs were sampled every 2 h for 10 h and dissected immediately to measure the enzyme activity. The crabs at room temperature (28℃) were used as the control group. The activity of superoxide dismutase (SOD), catalase (CAT) and gkttathione peroxidase (GPX), the content of malondialdehyde (MDA) and the activity of 4 ATPases (Na^+, K^+-ATPase, Mg^2+-ATPase; Ca^2+-ATPase; Ca^2+, Mg^2+-ATPase) were measured biochemically. In contrast to the control group, the SOD activity increased significantly from 2 to 6 h after the cold stress, and then decreased. The CAT and GPX activities increased in 2 h, and then decreased gradually. The content of MDA increased gradually in 4 h. The activity of Na^+, K^+-ATPase decreased in 2 h, increased up to the top value at Hour 6, then decreased again. The activities of Mg^2+-ATPase, Ca^2+-ATPase and Ca^2+, Mg^2+-ATPase increased significantly in 6 h, insignificantly in any other hours. Under cold stress, the activity of antioxidative enzymes in S, serrata was reduced at first then stabilized, ROS-scavenging weakened, and MDA accumulated gradually in the gill after 6 h. The activity of the 4 ATPases in the crab decreased after 6 h, suggesting that the ability to regulate ion concentration has been paralyzed. Therefore, the maximum period to sustain healthy meat in the crab under cold stress is 6 hours.展开更多
基金the National High-Tech Research and Development Program of China (863 Program) (No. 2002AA603013)
文摘Mud crab (Scylla serrata) is an important commercial crustacean in China. An experiment was designed to study the effect of cold stress on S. serrata. After a one-week adaptation at 28℃, the temperature is suddenly reduced to 4℃. The crabs were sampled every 2 h for 10 h and dissected immediately to measure the enzyme activity. The crabs at room temperature (28℃) were used as the control group. The activity of superoxide dismutase (SOD), catalase (CAT) and gkttathione peroxidase (GPX), the content of malondialdehyde (MDA) and the activity of 4 ATPases (Na^+, K^+-ATPase, Mg^2+-ATPase; Ca^2+-ATPase; Ca^2+, Mg^2+-ATPase) were measured biochemically. In contrast to the control group, the SOD activity increased significantly from 2 to 6 h after the cold stress, and then decreased. The CAT and GPX activities increased in 2 h, and then decreased gradually. The content of MDA increased gradually in 4 h. The activity of Na^+, K^+-ATPase decreased in 2 h, increased up to the top value at Hour 6, then decreased again. The activities of Mg^2+-ATPase, Ca^2+-ATPase and Ca^2+, Mg^2+-ATPase increased significantly in 6 h, insignificantly in any other hours. Under cold stress, the activity of antioxidative enzymes in S, serrata was reduced at first then stabilized, ROS-scavenging weakened, and MDA accumulated gradually in the gill after 6 h. The activity of the 4 ATPases in the crab decreased after 6 h, suggesting that the ability to regulate ion concentration has been paralyzed. Therefore, the maximum period to sustain healthy meat in the crab under cold stress is 6 hours.