Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content an...Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content and chloroplast structure little changed in the course of desiccation, therefore has been called homoiochlorophyllous desiccation-tolerant plants (HDTs). Another type of resurrection angiosperms that lost its chlorophyll dining desiccation is called poikilochlorophyllous desiccation-tolerant plants (PDTs). HDTs have been received more attention because of simplicity of protection mechanism which is much easy to the study and utilization of the desiccation tolerance of resurrection angiosperms. Recent advances in studies of photosynthesis of resurrection angiosperms indicate that photochemical activities are sensitive indicators for the study of physiological state of resurrection angiosperms during desiccation and rehydration. Photochemical activities of resurrection angiosperms are inhibited with loss of water similar to those of general plants, however, the magic thing is that they could reactivate rapidly during rehydration even losing more than 95% water. Up-regulations in xanthophyll cycle and antioxidative systems as well as preservation in integrity and stability of photosynthetic membranes during desiccation may be very important to desiccation tolerance of resurrection angiosperms. The fact that phosphate treatment in rehydration stage also strongly influences resurrection indicated importance of studies on rehydration stages of resurrection angiosperms.展开更多
Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for bi...Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.展开更多
The variations of antioxidant enzyme activities including superoxide dismutase (SOD: EC 1.15.1.1), peroxidase (POD: EC 1.11.1.7) and catalase (CAT: EC 1.11.1.6), lipid peroxidation and major electrolytes in A...The variations of antioxidant enzyme activities including superoxide dismutase (SOD: EC 1.15.1.1), peroxidase (POD: EC 1.11.1.7) and catalase (CAT: EC 1.11.1.6), lipid peroxidation and major electrolytes in Aloe vera irrigated for three years with seawater having different salinity were studied. The results indicate that POD activity increased significantly at 10% seawater level, whereas decreased at higher seawater levels. The SOD activity decreased with increasing seawater concentration except for treatment with 100% seawater (denoted as T100%) under long-term salt stress. Salinity decreased CAT activity,and increased lipid peroxidation and cell membrane injury. In addition, Ca^2+ content was high in Aloe irrigated by seawater of low salinity level, but low in Aloe irrigated by seawater of high salinity level. An opposite trend was observed for the effect of seawater on Na^+ content of plants. K^+ and Mg^2+ contents remain relatively stable under various seawater levels, which benefit plant growth.展开更多
文摘Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content and chloroplast structure little changed in the course of desiccation, therefore has been called homoiochlorophyllous desiccation-tolerant plants (HDTs). Another type of resurrection angiosperms that lost its chlorophyll dining desiccation is called poikilochlorophyllous desiccation-tolerant plants (PDTs). HDTs have been received more attention because of simplicity of protection mechanism which is much easy to the study and utilization of the desiccation tolerance of resurrection angiosperms. Recent advances in studies of photosynthesis of resurrection angiosperms indicate that photochemical activities are sensitive indicators for the study of physiological state of resurrection angiosperms during desiccation and rehydration. Photochemical activities of resurrection angiosperms are inhibited with loss of water similar to those of general plants, however, the magic thing is that they could reactivate rapidly during rehydration even losing more than 95% water. Up-regulations in xanthophyll cycle and antioxidative systems as well as preservation in integrity and stability of photosynthetic membranes during desiccation may be very important to desiccation tolerance of resurrection angiosperms. The fact that phosphate treatment in rehydration stage also strongly influences resurrection indicated importance of studies on rehydration stages of resurrection angiosperms.
文摘Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.
文摘The variations of antioxidant enzyme activities including superoxide dismutase (SOD: EC 1.15.1.1), peroxidase (POD: EC 1.11.1.7) and catalase (CAT: EC 1.11.1.6), lipid peroxidation and major electrolytes in Aloe vera irrigated for three years with seawater having different salinity were studied. The results indicate that POD activity increased significantly at 10% seawater level, whereas decreased at higher seawater levels. The SOD activity decreased with increasing seawater concentration except for treatment with 100% seawater (denoted as T100%) under long-term salt stress. Salinity decreased CAT activity,and increased lipid peroxidation and cell membrane injury. In addition, Ca^2+ content was high in Aloe irrigated by seawater of low salinity level, but low in Aloe irrigated by seawater of high salinity level. An opposite trend was observed for the effect of seawater on Na^+ content of plants. K^+ and Mg^2+ contents remain relatively stable under various seawater levels, which benefit plant growth.