Cristobalite aluminum phosphate (C-AlPO_4) coatings were prepared by a hydrothermal electrophoretic deposition process on SiC-coated C/C composites. Phase compositions and microstructures of the as-prepared coatings w...Cristobalite aluminum phosphate (C-AlPO_4) coatings were prepared by a hydrothermal electrophoretic deposition process on SiC-coated C/C composites. Phase compositions and microstructures of the as-prepared coatings were characterized by XRD and SEM analyses. The influence of deposition voltage on the phase, microstructure and antioxidation property of the cristobalite aluminum phosphate coatings was investigated. Results show that the as-prepared coatings are composed of cristobalite aluminum phosphate crystallites. The thickness and density of cristobalite aluminum phosphate coatings are improved with the increase of deposition voltage. The deposition amount and bonding strength of the cristobalite aluminum phosphate coatings also increase with the increase of deposition voltage. The deposition mass per unit area of the coatings and the square root of the deposition time at different hydrothermal voltages satisfy linear relationship. The antioxidation property of the coated C/C composites is improved with the increase of deposition voltage. Compared with SiC coatings prepared by pack cementation, the multilayer coatings prepared by pack cementation with a later hydrothermal electrophoretic deposition process exhibit better antioxidation property. The as-prepared multi-coatings can effectively protect C/C composites from oxidation in air at 1 773 K for 37 h with a mass loss rate of 0.53%.展开更多
Aluminum specimens were anodized in a sulfuric acid bath, thensilver was electrodeposited in pores of the anodized aluminum byusing alternating current. The anodized aluminum with depositedsilver was tested for its an...Aluminum specimens were anodized in a sulfuric acid bath, thensilver was electrodeposited in pores of the anodized aluminum byusing alternating current. The anodized aluminum with depositedsilver was tested for its antibacterial performance. The results showthat the antibacterial rates of the specimens are above 95/100against the growth of E. coli, P. Aeruginasa, S. faecalis and S.aureus. The morphology of the silver in pores of anodized aluminum ischaracterized by transmission electron microscopy, and themicrographs indicate that silver is assembled in the form ofnanowires with a diameter of 10 nm or 25 nm. The nanowires have astructure of parallel bright stripes alternating with parallel darkstripes.展开更多
基金Project(50772063) supported by the National Natural Science Foundation of China Project(NCET-06-0893) supported by the Foundation of New Century Excellent Talent in University of China+2 种基金 Project(20070708001) supported by the Doctorate Foundation of Ministry of Education of China Project(SJ08-ZT05) supported by the Natural Science Foundation of Shaanxi Province, ChinaProject supported by the Graduate Innovation Fund of Shaanxi University of Science and Technology, China
文摘Cristobalite aluminum phosphate (C-AlPO_4) coatings were prepared by a hydrothermal electrophoretic deposition process on SiC-coated C/C composites. Phase compositions and microstructures of the as-prepared coatings were characterized by XRD and SEM analyses. The influence of deposition voltage on the phase, microstructure and antioxidation property of the cristobalite aluminum phosphate coatings was investigated. Results show that the as-prepared coatings are composed of cristobalite aluminum phosphate crystallites. The thickness and density of cristobalite aluminum phosphate coatings are improved with the increase of deposition voltage. The deposition amount and bonding strength of the cristobalite aluminum phosphate coatings also increase with the increase of deposition voltage. The deposition mass per unit area of the coatings and the square root of the deposition time at different hydrothermal voltages satisfy linear relationship. The antioxidation property of the coated C/C composites is improved with the increase of deposition voltage. Compared with SiC coatings prepared by pack cementation, the multilayer coatings prepared by pack cementation with a later hydrothermal electrophoretic deposition process exhibit better antioxidation property. The as-prepared multi-coatings can effectively protect C/C composites from oxidation in air at 1 773 K for 37 h with a mass loss rate of 0.53%.
文摘Aluminum specimens were anodized in a sulfuric acid bath, thensilver was electrodeposited in pores of the anodized aluminum byusing alternating current. The anodized aluminum with depositedsilver was tested for its antibacterial performance. The results showthat the antibacterial rates of the specimens are above 95/100against the growth of E. coli, P. Aeruginasa, S. faecalis and S.aureus. The morphology of the silver in pores of anodized aluminum ischaracterized by transmission electron microscopy, and themicrographs indicate that silver is assembled in the form ofnanowires with a diameter of 10 nm or 25 nm. The nanowires have astructure of parallel bright stripes alternating with parallel darkstripes.