Zinc(Zn)has recently been recognized as a promising bone repair material due to its inherent biodegradability and favorable biocompatibility.In this work,rare earth neodymium(Nd)was introduced into a Zn-based alloy fa...Zinc(Zn)has recently been recognized as a promising bone repair material due to its inherent biodegradability and favorable biocompatibility.In this work,rare earth neodymium(Nd)was introduced into a Zn-based alloy fabricated using a laser powder bed fusion(LPBF)process.Results showed that addition of Nd significantly improved the melt fluidity and reduced the evaporation of Zn,thereby achieving parts with a high densification rate of 98.71%.Significantly,the Nd alloying treatment effectively refined the grain size from 25.3 to 6.2μm.Nd Zn5 eutectics precipitated and contributed to a second-phase strengthening effect.As a result,the tensile strength increased to(119.3±5.1)MPa and the Vickers hardness to(76.2±4.1).Moreover,the Zn–Nd alloy exhibited good anti-inflammatory activity,as the Nd ions released during degradation had a strong affinity with cell membrane phospholipids and consequently inhibited the release of inflammatory cytokines.It also presented favorable cytocompatibility,showing great potential as a bone repair material.展开更多
基金the National Natural Science Foundation of China(Nos.51935014,82072084,and 81871498)the Jiangxi Provincial Natural Science Foundation of China(Nos.20192ACB20005 and 2020ACB214004)+4 种基金the Jiangxi Provincial Key R&D Program(No.20201BBE51012)the Guangdong Provincial Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(2018)the China Postdoctoral Science Foundation(No.2020M682114)the Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technologythe Project of Hunan Provincial Science and Technology Plan(No.2017RS3008),China。
文摘Zinc(Zn)has recently been recognized as a promising bone repair material due to its inherent biodegradability and favorable biocompatibility.In this work,rare earth neodymium(Nd)was introduced into a Zn-based alloy fabricated using a laser powder bed fusion(LPBF)process.Results showed that addition of Nd significantly improved the melt fluidity and reduced the evaporation of Zn,thereby achieving parts with a high densification rate of 98.71%.Significantly,the Nd alloying treatment effectively refined the grain size from 25.3 to 6.2μm.Nd Zn5 eutectics precipitated and contributed to a second-phase strengthening effect.As a result,the tensile strength increased to(119.3±5.1)MPa and the Vickers hardness to(76.2±4.1).Moreover,the Zn–Nd alloy exhibited good anti-inflammatory activity,as the Nd ions released during degradation had a strong affinity with cell membrane phospholipids and consequently inhibited the release of inflammatory cytokines.It also presented favorable cytocompatibility,showing great potential as a bone repair material.