Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after ox...Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different ...[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.展开更多
3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3...3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.展开更多
Nickel-based superalloys with and without Co by partial replacement of W were prepared using double vacuum melting.A comparison of the oxidation in air and hot corrosion behaviors under molten 75 wt.%Na2 SO4+25 wt.%Na...Nickel-based superalloys with and without Co by partial replacement of W were prepared using double vacuum melting.A comparison of the oxidation in air and hot corrosion behaviors under molten 75 wt.%Na2 SO4+25 wt.%NaCl at 900℃were systematically investigated.The results showed that partial replacement of W with Co promoted the formation of chromia scale and consequently decreased the oxidation rate.Besides,the addition of Co also retarded the internal oxidation/nitridation of Al and consequently promoted the growth of Al_(2) O3 scale,which further decreased the scaling rate and improved the adhesion of scale.Moreover,the addition of Co also further improved the hot corrosion resistance under molten Na2 SO4-NaCl salts.展开更多
CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by u...CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by using X-ray diffraction,scanning electron microscopy,differential scanning calorimetry,thermal gravimetric analysis and nanoindentation.The structural transformation of single phase cubic Cr_(0.42)Al_(0.58)N and Cr_(0.39)Al_(0.56)Y_(0.05)N coatings to cubic−wurtzite mixed Cr_(0.32)Al_(0.56)Y_(0.12)N coating leads to a drop in hardness from(30.2±0.7)GPa of Cr_(0.42)Al_(0.58)N and(32.0±1.0)GPa of Cr_(0.39)Al_(0.56)Y_(0.05)N to(25.2±0.7)GPa of Cr_(0.32)Al_(0.56)Y_(0.12)N.The incorporation of 5 at.%Y retards the thermal decomposition of CrAlN,verified by the postponed precipitation of w-AlN and N-loss upon annealing.Correspondingly,Cr_(0.39)Al_(0.56)Y_(0.05)N coating consistently exhibits the highest hardness value during thermal annealing.Nevertheless,alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.展开更多
The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance ...The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than 4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 MPa, but that of the samples without CaO is only 60 MPa. Fracture toughness is improved obviously by CaO doping, the samples doped with 2% CaO have the maximum fracture toughness of 2.12 MPa ·m1/2 , which is about two times of that of the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.展开更多
Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test ...Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.展开更多
Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock ...Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 ug/L Cd2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 ug/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 ug/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.展开更多
Healthy sporophytes of two gametophyte mutants of Laminariajaponica with different heat resistances: kelp 901 (901, with comparatively stronger heat-resistance) and Rongcheng No. I (RC, sensitive to heat stress),...Healthy sporophytes of two gametophyte mutants of Laminariajaponica with different heat resistances: kelp 901 (901, with comparatively stronger heat-resistance) and Rongcheng No. I (RC, sensitive to heat stress), were respectively collected during October to December 2002 from Yantai and Rongcheng Sea Farm in the Shandong Peninsula of China. The contents of some biochemical materials and antioxidant capacity were analyzed under controlled laboratory conditions to identify if there is any relation between the overall antioxidant capacity and the heat-resistance in L. japonica and to understand possible mechanism of heat-resistance. Results show that: (1) the overall antioxidant capacity in healthy sporophyte of 901, such as vitamin E, polyphenol, and ascorbic acid contents and the enzymatic activity of SOD, POD, CAT, Gpx, PPO, and PAL, were not always higher than that of RC under controlled laboratory conditions, and no significance (P〉0.05) was shown in total antioxidant capacity (T-AOC) in 901 and RC. Result suggested that the difference in antioxidant capacity was not a decisive factor for different heat-resistances in L. japonica; (2) the simultaneous assay on isozymes was carried out using vertical polyacrylamide gel electrophoresis (PAGE). Considerable differences in peroxide (PRX), malate dehydrogenase (MDH), malic enzyme (ME), polyphenol oxidase (PPO) and glutamate dehydrogenase (GDH) were obtained in 901 and RC from either the band number, relative mobility (Rf), or staining intensity, and ME could be used as an indicator to distinguish healthy sporophyte of 901 and RC under controlled laboratory conditions.展开更多
Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for bi...Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.展开更多
Ceramics used in the high temperature environment are inevitably subjected to sudden temperature change, which may lead to catastrophic thermal shock failure due to the intrinsic brittleness of ceramics. In this paper...Ceramics used in the high temperature environment are inevitably subjected to sudden temperature change, which may lead to catastrophic thermal shock failure due to the intrinsic brittleness of ceramics. In this paper, an experimental platform is designed to realize the in-situ observation during the thermal shock experiments. Experimental results show that all the cracks initiate from one of the edge midpoints and propagate to another one for square specimens. Such experimental observation is consistent with the maximum tensile stress zone with the maximum temperature gradient given by the finite element method(FEM). The different crack modes resulting from different heating rates after thermal shock experiments are observed and analyzed. Comparison between different clamping methods is conducted to study the effects of boundary conditions on the thermal shock experiments. Furthermore, in order to improve the thermal shock performance of alumina ceramics, crack arrest blocks are added near the edge midpoint. The thickness, shape and arrangement of the blocks are systematically investigated to understand the mechanism of improvement of thermal shock resistance.展开更多
基金Projects(09JJ4027)supported by the Natural Science Foundation of Hunan Province,ChinaProject(201206375003)supported by China Scholarship Council
文摘Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
文摘[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.
文摘3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.
基金financial supports from the Natural Science Foundation of Shandong Province,China(No.ZR2019MEE107)Shandong Jiaotong University“Climbing”Research Innovation Team Program,China(No.SDJTC1802)PhD Scientific Research Foundation of Shandong Jiaotong University,China(No.BS2018005)。
文摘Nickel-based superalloys with and without Co by partial replacement of W were prepared using double vacuum melting.A comparison of the oxidation in air and hot corrosion behaviors under molten 75 wt.%Na2 SO4+25 wt.%NaCl at 900℃were systematically investigated.The results showed that partial replacement of W with Co promoted the formation of chromia scale and consequently decreased the oxidation rate.Besides,the addition of Co also retarded the internal oxidation/nitridation of Al and consequently promoted the growth of Al_(2) O3 scale,which further decreased the scaling rate and improved the adhesion of scale.Moreover,the addition of Co also further improved the hot corrosion resistance under molten Na2 SO4-NaCl salts.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51775560).
文摘CrAlYN coatings with different Y contents(0,5 and 12 at.%)were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure,mechanical and thermal properties of CrAlN coatings by using X-ray diffraction,scanning electron microscopy,differential scanning calorimetry,thermal gravimetric analysis and nanoindentation.The structural transformation of single phase cubic Cr_(0.42)Al_(0.58)N and Cr_(0.39)Al_(0.56)Y_(0.05)N coatings to cubic−wurtzite mixed Cr_(0.32)Al_(0.56)Y_(0.12)N coating leads to a drop in hardness from(30.2±0.7)GPa of Cr_(0.42)Al_(0.58)N and(32.0±1.0)GPa of Cr_(0.39)Al_(0.56)Y_(0.05)N to(25.2±0.7)GPa of Cr_(0.32)Al_(0.56)Y_(0.12)N.The incorporation of 5 at.%Y retards the thermal decomposition of CrAlN,verified by the postponed precipitation of w-AlN and N-loss upon annealing.Correspondingly,Cr_(0.39)Al_(0.56)Y_(0.05)N coating consistently exhibits the highest hardness value during thermal annealing.Nevertheless,alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.
基金Project(2005CB623703) supported by the National Basic Research Program of China
文摘The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than 4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 MPa, but that of the samples without CaO is only 60 MPa. Fracture toughness is improved obviously by CaO doping, the samples doped with 2% CaO have the maximum fracture toughness of 2.12 MPa ·m1/2 , which is about two times of that of the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.
基金Supported by Shandong Science and Technology Key Projects (No2007GG30003004)
文摘Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.
基金Supported by the 100 Talents Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(No.41206105)the Key Deployment Program of Chinese Academy of Sciences(No.KZZD-EW-14-03)
文摘Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 ug/L Cd2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 ug/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 ug/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.
基金Supported by the National Hi-Tech Research Program (863 Program, No. 2004AA639770)the National Natural Science Foundation of China (No.30270258)Program for New Century Excellent Talents in University (NCET-05-0597).
文摘Healthy sporophytes of two gametophyte mutants of Laminariajaponica with different heat resistances: kelp 901 (901, with comparatively stronger heat-resistance) and Rongcheng No. I (RC, sensitive to heat stress), were respectively collected during October to December 2002 from Yantai and Rongcheng Sea Farm in the Shandong Peninsula of China. The contents of some biochemical materials and antioxidant capacity were analyzed under controlled laboratory conditions to identify if there is any relation between the overall antioxidant capacity and the heat-resistance in L. japonica and to understand possible mechanism of heat-resistance. Results show that: (1) the overall antioxidant capacity in healthy sporophyte of 901, such as vitamin E, polyphenol, and ascorbic acid contents and the enzymatic activity of SOD, POD, CAT, Gpx, PPO, and PAL, were not always higher than that of RC under controlled laboratory conditions, and no significance (P〉0.05) was shown in total antioxidant capacity (T-AOC) in 901 and RC. Result suggested that the difference in antioxidant capacity was not a decisive factor for different heat-resistances in L. japonica; (2) the simultaneous assay on isozymes was carried out using vertical polyacrylamide gel electrophoresis (PAGE). Considerable differences in peroxide (PRX), malate dehydrogenase (MDH), malic enzyme (ME), polyphenol oxidase (PPO) and glutamate dehydrogenase (GDH) were obtained in 901 and RC from either the band number, relative mobility (Rf), or staining intensity, and ME could be used as an indicator to distinguish healthy sporophyte of 901 and RC under controlled laboratory conditions.
文摘Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2015CB351900)the National Natural Science Foundation of China(Grant Nos.11222220,11320101001,11372155&11227801)the Tsinghua University Initiative Scientific Research Program
文摘Ceramics used in the high temperature environment are inevitably subjected to sudden temperature change, which may lead to catastrophic thermal shock failure due to the intrinsic brittleness of ceramics. In this paper, an experimental platform is designed to realize the in-situ observation during the thermal shock experiments. Experimental results show that all the cracks initiate from one of the edge midpoints and propagate to another one for square specimens. Such experimental observation is consistent with the maximum tensile stress zone with the maximum temperature gradient given by the finite element method(FEM). The different crack modes resulting from different heating rates after thermal shock experiments are observed and analyzed. Comparison between different clamping methods is conducted to study the effects of boundary conditions on the thermal shock experiments. Furthermore, in order to improve the thermal shock performance of alumina ceramics, crack arrest blocks are added near the edge midpoint. The thickness, shape and arrangement of the blocks are systematically investigated to understand the mechanism of improvement of thermal shock resistance.