Cytosine-substituted mildiomycin analogue (MIL-C) was produced effectively by supplementing cytosine into the culture of Streptoverticillium rimofaciens. In order to improve the yield of MIL-C, statistically-based e...Cytosine-substituted mildiomycin analogue (MIL-C) was produced effectively by supplementing cytosine into the culture of Streptoverticillium rimofaciens. In order to improve the yield of MIL-C, statistically-based experimental designs were applied to optimize the fermentation medium for S. rimofaciens ZJU 5119. Fifteen culture conditions were examined for their significances on MIL-C production using Plackett-Burman design. The Plackett-Burrnan design and one-variable-at-a-time design indicated that glucose and rice meal as the complex carbon sources, and peanut cake meal and NH4NO3 as the complex nitrogen sources were beneficial for MIL-C production in S. rimofaciens ZJU 5119. The results of further central composition design (CCD) showed that the optimal concentration of glucose, rice meal and peanut cake meal were 18.7 g/L, 64.8 g/L and 65.1 g/L, respectively. By using this optimal fermentation medium, the MIL-C concentration was increased up to 1336.5 mg/L, an approximate 3.8-fold improvement over the previous concentration (350.0 mg/L) with un-optimized medium. This work will be very helpful to the large-scale production of MIL-C in the future.展开更多
基金Project supported by the Ministry of Science and Technology, China (No. 2004BA308A22-14)the Department of Science and Tech- nology of Zhejiang Province, China (No. 011102543)
文摘Cytosine-substituted mildiomycin analogue (MIL-C) was produced effectively by supplementing cytosine into the culture of Streptoverticillium rimofaciens. In order to improve the yield of MIL-C, statistically-based experimental designs were applied to optimize the fermentation medium for S. rimofaciens ZJU 5119. Fifteen culture conditions were examined for their significances on MIL-C production using Plackett-Burman design. The Plackett-Burrnan design and one-variable-at-a-time design indicated that glucose and rice meal as the complex carbon sources, and peanut cake meal and NH4NO3 as the complex nitrogen sources were beneficial for MIL-C production in S. rimofaciens ZJU 5119. The results of further central composition design (CCD) showed that the optimal concentration of glucose, rice meal and peanut cake meal were 18.7 g/L, 64.8 g/L and 65.1 g/L, respectively. By using this optimal fermentation medium, the MIL-C concentration was increased up to 1336.5 mg/L, an approximate 3.8-fold improvement over the previous concentration (350.0 mg/L) with un-optimized medium. This work will be very helpful to the large-scale production of MIL-C in the future.