期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
大豆抗病基因定位的分子标记研究进展 被引量:4
1
作者 邹继军 杨庆凯 《中国油料作物学报》 CAS CSCD 北大核心 2000年第4期75-78,共4页
综述现代分子标记技术在大豆疫霉根腐病、细菌性斑点病、花叶病毒病、灰斑病、孢囊线虫、瘁死综合症等病害抗病基因定位中的最新进展 。
关键词 大豆 抗病基因定位 分子标记
下载PDF
烟草基因组计划进展篇:3.烟草分子标记遗传连锁图构建和重要抗病基因定位 被引量:8
2
作者 肖炳光 《中国烟草科学》 CSCD 2013年第3期118-119,共2页
分子标记遗传连锁图是基因定位、图位克隆、分子标记辅助选择育种的基础[1]。普通烟草基因组较大,分子标记多态性水平较低[2],为遗传连锁图构建、基因定位等相关研究造成较大困难。近年来,Bindler等[3-4]利用美国烟草基因组测序项目的... 分子标记遗传连锁图是基因定位、图位克隆、分子标记辅助选择育种的基础[1]。普通烟草基因组较大,分子标记多态性水平较低[2],为遗传连锁图构建、基因定位等相关研究造成较大困难。近年来,Bindler等[3-4]利用美国烟草基因组测序项目的序列数据,开发了大量SSR标记,构建了高密度烟草遗传连锁图。由于他们使用的作图群体为烤烟和晒烟品种间杂交F2群体,遗传差异相对较远,可供烤烟利用的标记数有限。在中国烟草总公司、中国烟草总公司云南省公司多个项目的资助下,云南省烟草农业科学研究院联合行业内外相关单位,开展了烟草分子标记开发、遗传连锁图构建和抗病基因定位等研究工作,取得了重要进展。 展开更多
关键词 分子标记辅助选择育种 抗病基因定位 遗传连锁图 普通烟草 基因组计划 分子标记多态性 农业科学研究院 中国烟草
下载PDF
广谱高抗水稻白叶枯病新基因的精细定位 被引量:3
3
作者 林兴华 王春台 +3 位作者 文国松 张端品 谢岳峰 张启发 《遗传》 CAS CSCD 北大核心 1998年第S1期118-118,共1页
广谱高抗水稻白叶枯病新基因的精细定位林兴华王春台文国松张端品谢岳峰张启发(华中农业大学作物遗传改良国家重点实验室,武汉430070)我们(Linetal.1996)报道了从水稻遗传多样性中心的云南稻种资源中鉴定的广谱... 广谱高抗水稻白叶枯病新基因的精细定位林兴华王春台文国松张端品谢岳峰张启发(华中农业大学作物遗传改良国家重点实验室,武汉430070)我们(Linetal.1996)报道了从水稻遗传多样性中心的云南稻种资源中鉴定的广谱高抗白叶枯病新基因Xa22(t),... 展开更多
关键词 水稻白叶枯病 基因 感病亲本 精细定位 遗传改良 抗白叶枯病 抗病基因定位 国家重点实验室 高抗 作图群体
下载PDF
大麦条纹病抗性及防治研究进展 被引量:10
4
作者 吴宽然 杨建明 +1 位作者 朱靖环 金婷 《浙江农业学报》 CSCD 北大核心 2013年第4期903-907,共5页
综述了大麦条纹病菌(禾内脐蠕孢,麦类核菌)侵染循环、生物学特性和致病性分化、抗性鉴定、抗病基因分子标记与定位以及大麦条纹病防治等方面的研究进展和最新成果,并探讨了我国大麦抗条纹病育种体系建立的策略。
关键词 大麦条纹病 致病性 抗病基因定位 育种
下载PDF
RAPD标记及其在植物真菌病害研究中的应用 被引量:5
5
作者 姜述君 《黑龙江八一农垦大学学报》 2001年第1期17-22,共6页
论述了RAPD技术的原理和特点及近年来RAPD技术在植物病原真菌的种类鉴定、群体遗传、毒性变异、毒性基因迁移、菌源传播及植物抗病基因定位等植物病理学的诸多方面研究状况,并对RAPD技术在植物真菌病害研究中原理和技术问题以及应用前... 论述了RAPD技术的原理和特点及近年来RAPD技术在植物病原真菌的种类鉴定、群体遗传、毒性变异、毒性基因迁移、菌源传播及植物抗病基因定位等植物病理学的诸多方面研究状况,并对RAPD技术在植物真菌病害研究中原理和技术问题以及应用前景进行了讨论。 展开更多
关键词 植物真菌病害 RAPD标记 群体遗传 毒性基因迁移 抗病基因定位 种类鉴定
下载PDF
Physical Mapping of the Sequences Homologous to Disease Resistance Genes myb1 and NDR1 in Maize 被引量:9
6
作者 宁顺斌 宋运淳 +2 位作者 王玲 魏文辉 刘立华 《Acta Botanica Sinica》 CSCD 2000年第6期605-610,共6页
Using fluorescence in situ hybridization, the authors investigated the homology between three plant species, maize (Zea mays L.) and tobacco (Nicotiana tabacum L.), maize and Arabidopsis thaliana (L.) Heynh. at cy... Using fluorescence in situ hybridization, the authors investigated the homology between three plant species, maize (Zea mays L.) and tobacco (Nicotiana tabacum L.), maize and Arabidopsis thaliana (L.) Heynh. at cytogenetic level using two probes corresponding to functional disease resistance genes myb1 and NDR1 in Arabidopsis and tobacco respectively. The hybridization signals of the tested probes were detected in maize chromosomes 8 and 5 respectively, and the single location of each of the two probes showed only single copy of them in maize genome. The results provided a valuable insight into searching for genes associated with programmed cell death in plants using heterologous probe with comparative genetic approach. In addition, the improvements of FISH technique using heterologous probes were discussed. 展开更多
关键词 hypersensitive response programmed cell death comparative genetics fluorescence in situ hybridization MAIZE
下载PDF
ISSR标记技术在植物病原真菌研究中的应用 被引量:10
7
作者 徐玉梅 刘小妹 王建明 《中国农学通报》 CSCD 北大核心 2011年第9期358-361,共4页
本文对ISSR在植物病原真菌研究中的应用现状进行综述。在植物病原真菌研究中,ISSR主要应用在遗传多样性研究,种间及种内关系及病菌检测,种群遗传分化以及在抗病基因标记及定位中的应用等方面。ISSR技术具操作简单、重复性、多态性丰富... 本文对ISSR在植物病原真菌研究中的应用现状进行综述。在植物病原真菌研究中,ISSR主要应用在遗传多样性研究,种间及种内关系及病菌检测,种群遗传分化以及在抗病基因标记及定位中的应用等方面。ISSR技术具操作简单、重复性、多态性丰富和耗资少等优点,并且能鉴定到病原真菌小种,这将使其在新物种鉴定、病菌检测、遗传分化等研究中发挥积极作用,也会被越来越多地应用在更多领域中。 展开更多
关键词 ISSR 植物病原真菌 遗传多样性 群体遗传分化 抗病基因标记和定位
下载PDF
Mapping of a Major Stripe Rust Resistance Gene in Chinese Native Wheat Variety Chike Using Microsatellite Markers 被引量:4
8
作者 刘方慧 牛永春 +1 位作者 邓晖 檀根甲 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第12期1123-1130,共8页
Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Geneti... Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Genetic analysis indicated that resistance to the physiological race CY32 of the pathogen in the variety was controlled by one dominant gene. In this study, BSA (bulked segregant analysis) methods and SSRs (simple sequence repeats) marker polymorphic analysis are used to map the gene. The resistant and susceptible DNA bulks were prepared from the segregating F2 population of the cross between Taichung 29, a susceptible variety as maternal parent, and Chike as paternal parent. Over 400 SSR primers were screened, and five SSR markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 on the chromosome arm 1BL were found to be polymorphic between the resistant and the susceptible DNA bulks as well as their parents. Genetic linkage was tested on segregating F2 population with 200 plants, including 140 resistant and 60 susceptible plants. All the five SSR markers were linked to the stripe rust resistance gene in Chike. The genetic distances for the markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 to the target gene were 8.3 cM, 9.1 cM, 17.2 cM, 20.6 cM, and 31.6 cM, respectively. Analysis using 21 nulli-tetrasomic Chinese Spring lines further confirmed that all the five markers were located on chromosome lB. On the basis of the above results, it is reasonable to assume that the major stripe rust resistance gene YrChk in Chike was located on the chromosome arm 1BL, and its comparison with the other stripe rust resistance genes located on 1B suggested that YrChk may be a novel gene that provides the resistance against stripe rust in Chike. Exploration and utilization of resources of disease resistance genes in native wheat varieties will be helpful both to diversify the resistance genes and to amend the situation of resistance gene simplification in the commercial wheat cultivars in China. 展开更多
关键词 WHEAT native variety Puccinia striiformis resistance gene microsatellite marker gene mapping
下载PDF
Molecular and Physical Mapping of Powdery Mildew Resistance Genes and QTLs in Wheat: A Review 被引量:7
9
作者 Jun GUO Cheng LIU +8 位作者 Shengnan ZHAI Haosheng LI Aifeng LIU Dungong CHENG Ran HAN Jianjun LIU Lingrang KONG Zhendong ZHAO Jianmin SONG 《Agricultural Science & Technology》 CAS 2017年第6期965-970,共6页
Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant find... Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection. 展开更多
关键词 Wheat powdery mildew Molecular mapping Major Pm resistance genes Quantitative trait loci (QTL) Marker-assisted selection
下载PDF
Characterization and fine mapping of the rice blast resistance gene Pia 被引量:14
10
作者 ZENG XiaoShan YANG XianFeng +3 位作者 ZHAO ZhengHong LIN Fei WANG Ling PAN QingHua 《Science China(Life Sciences)》 SCIE CAS 2011年第4期372-378,共7页
Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, c... Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, carded by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis was carded out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia. 展开更多
关键词 rice blast resistance gene PIA t'me mapping GENOTYPE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部