Using fluorescence in situ hybridization, the authors investigated the homology between three plant species, maize (Zea mays L.) and tobacco (Nicotiana tabacum L.), maize and Arabidopsis thaliana (L.) Heynh. at cy...Using fluorescence in situ hybridization, the authors investigated the homology between three plant species, maize (Zea mays L.) and tobacco (Nicotiana tabacum L.), maize and Arabidopsis thaliana (L.) Heynh. at cytogenetic level using two probes corresponding to functional disease resistance genes myb1 and NDR1 in Arabidopsis and tobacco respectively. The hybridization signals of the tested probes were detected in maize chromosomes 8 and 5 respectively, and the single location of each of the two probes showed only single copy of them in maize genome. The results provided a valuable insight into searching for genes associated with programmed cell death in plants using heterologous probe with comparative genetic approach. In addition, the improvements of FISH technique using heterologous probes were discussed.展开更多
Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Geneti...Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Genetic analysis indicated that resistance to the physiological race CY32 of the pathogen in the variety was controlled by one dominant gene. In this study, BSA (bulked segregant analysis) methods and SSRs (simple sequence repeats) marker polymorphic analysis are used to map the gene. The resistant and susceptible DNA bulks were prepared from the segregating F2 population of the cross between Taichung 29, a susceptible variety as maternal parent, and Chike as paternal parent. Over 400 SSR primers were screened, and five SSR markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 on the chromosome arm 1BL were found to be polymorphic between the resistant and the susceptible DNA bulks as well as their parents. Genetic linkage was tested on segregating F2 population with 200 plants, including 140 resistant and 60 susceptible plants. All the five SSR markers were linked to the stripe rust resistance gene in Chike. The genetic distances for the markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 to the target gene were 8.3 cM, 9.1 cM, 17.2 cM, 20.6 cM, and 31.6 cM, respectively. Analysis using 21 nulli-tetrasomic Chinese Spring lines further confirmed that all the five markers were located on chromosome lB. On the basis of the above results, it is reasonable to assume that the major stripe rust resistance gene YrChk in Chike was located on the chromosome arm 1BL, and its comparison with the other stripe rust resistance genes located on 1B suggested that YrChk may be a novel gene that provides the resistance against stripe rust in Chike. Exploration and utilization of resources of disease resistance genes in native wheat varieties will be helpful both to diversify the resistance genes and to amend the situation of resistance gene simplification in the commercial wheat cultivars in China.展开更多
Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant find...Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.展开更多
Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, c...Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, carded by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis was carded out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia.展开更多
文摘Using fluorescence in situ hybridization, the authors investigated the homology between three plant species, maize (Zea mays L.) and tobacco (Nicotiana tabacum L.), maize and Arabidopsis thaliana (L.) Heynh. at cytogenetic level using two probes corresponding to functional disease resistance genes myb1 and NDR1 in Arabidopsis and tobacco respectively. The hybridization signals of the tested probes were detected in maize chromosomes 8 and 5 respectively, and the single location of each of the two probes showed only single copy of them in maize genome. The results provided a valuable insight into searching for genes associated with programmed cell death in plants using heterologous probe with comparative genetic approach. In addition, the improvements of FISH technique using heterologous probes were discussed.
基金the National Natural Science Foundation of China (No. 30571157) the National Basic Research Program (973 Program) (No. 2006CB100203).
文摘Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Genetic analysis indicated that resistance to the physiological race CY32 of the pathogen in the variety was controlled by one dominant gene. In this study, BSA (bulked segregant analysis) methods and SSRs (simple sequence repeats) marker polymorphic analysis are used to map the gene. The resistant and susceptible DNA bulks were prepared from the segregating F2 population of the cross between Taichung 29, a susceptible variety as maternal parent, and Chike as paternal parent. Over 400 SSR primers were screened, and five SSR markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 on the chromosome arm 1BL were found to be polymorphic between the resistant and the susceptible DNA bulks as well as their parents. Genetic linkage was tested on segregating F2 population with 200 plants, including 140 resistant and 60 susceptible plants. All the five SSR markers were linked to the stripe rust resistance gene in Chike. The genetic distances for the markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 to the target gene were 8.3 cM, 9.1 cM, 17.2 cM, 20.6 cM, and 31.6 cM, respectively. Analysis using 21 nulli-tetrasomic Chinese Spring lines further confirmed that all the five markers were located on chromosome lB. On the basis of the above results, it is reasonable to assume that the major stripe rust resistance gene YrChk in Chike was located on the chromosome arm 1BL, and its comparison with the other stripe rust resistance genes located on 1B suggested that YrChk may be a novel gene that provides the resistance against stripe rust in Chike. Exploration and utilization of resources of disease resistance genes in native wheat varieties will be helpful both to diversify the resistance genes and to amend the situation of resistance gene simplification in the commercial wheat cultivars in China.
基金Supported by the NSF of China(Grant no.31471488)State Key Laboratory of Crop Biology(2017KF03)+3 种基金Shandong Province Key Technology Innovation Project(2014GJJS0201-1)Transgenic Special Item(2016ZX08002003)National Modern Agricultural Industry System Construction Project(CARS-03-1-8)The Scholars of Taishan Seed Industry Project(2014-2019)
文摘Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.
基金supported by the National Transgenic Research Projects (Grant No.2009ZX08009-023B)the National Basic Research Program of China(Grant No.2011CB1007)the National Commonweal Specialized Research Project(Grant No.200803008)
文摘Blast, caused by Magnaporthe oryzae, is one of the most widespread and destructive diseases of rice. Breeding durable resistant cultivars (cvs) can be achieved by pyramiding of various resistance (R) genes. Pia, carded by cv. Aichi Asahi, was evaluated against 612 isolates of M. oryzae collected from 10 Chinese provinces. The Pia gene expresses weak resistance in all the provinces except for Jiangsu. Genomic position-ready marker-based linkage analysis was carded out in a mapping population consisting of 800 F2 plants derived from a cross of Aichi Asahi×Kasalath. The locus was defined in an interval of approximately 90 kb, flanked by markers A16 and A21. Four candidate genes (Pia-1, Pia-2, Pia-3, and Pia-4), all having the R gene conserved structure, were predicted in the interval using the cv. Nipponbare genomic sequence. Four candidate resistance gene (CRG) markers (A17, A25, A26, and A27), derived from the four candidates, were subjected to genotyping with the recombinants detected at the flanking markers. The first three markers completely co-segregated with the Pia locus, and the fourth was absent in the Aichi Asahi genome and disordered with the Pia locus and its flanking markers, indicating that the fourth candidate gene, Pia-4, could be excluded. Co-segregation marker-based genotyping of the three sets of differentials with known R gene genotypes revealed that the genotype of A26 (Pia-3) perfectly matched the R gene genotype of Pia, indicating that Pia-3 is the strongest candidate gene for Pia.