Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming ...Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming mice (dosage, 0.1 g·kg^(-1)·d^(-1)) intragastrically for 7 successive days. The contents of selenium in heart, liver, spleen, kidneys, lungs, stomach, brain, muscle, and bone were determined by fluorometric method on the eighth day. MTT assay was used to study tumor growth inhibition of Eb in vitro, and lymphocyte transformation, hemolysin formation and phagocytosis assay were used to study its immunocompetence. Results After 7 days′ administration of Eb, the tissue contents of sele-(nium) in liver, spleen, lungs, kidneys, and bone of mice increased, especially those in liver and spleen increased significan-tly, compared with controls; but no significant changes of such contents were found in muscle, heart, brain, and stomach. Eb demonstrated inhibitory effects on human Bel-7402, BGC-823, and Calu-3 cancer cell lines in vitro. Eb also showed ability to enhance lymphocyte transformation and serum hemolysin formation in vitro and increase the phagocytosis of macrophages. Conclusion The validated antitumor and immunostimulatory activities of Eb suggest a hypothesis that Eb may behave as a biological response modifier when used as an antitumor agent. Eb is worthy of further study in developing a new antineoplastic and immunity enhancing agent in the light of its antitumor activity, immunocompetence and specific distribution in liver, lungs, kidneys, bone, and spleen.展开更多
文摘Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming mice (dosage, 0.1 g·kg^(-1)·d^(-1)) intragastrically for 7 successive days. The contents of selenium in heart, liver, spleen, kidneys, lungs, stomach, brain, muscle, and bone were determined by fluorometric method on the eighth day. MTT assay was used to study tumor growth inhibition of Eb in vitro, and lymphocyte transformation, hemolysin formation and phagocytosis assay were used to study its immunocompetence. Results After 7 days′ administration of Eb, the tissue contents of sele-(nium) in liver, spleen, lungs, kidneys, and bone of mice increased, especially those in liver and spleen increased significan-tly, compared with controls; but no significant changes of such contents were found in muscle, heart, brain, and stomach. Eb demonstrated inhibitory effects on human Bel-7402, BGC-823, and Calu-3 cancer cell lines in vitro. Eb also showed ability to enhance lymphocyte transformation and serum hemolysin formation in vitro and increase the phagocytosis of macrophages. Conclusion The validated antitumor and immunostimulatory activities of Eb suggest a hypothesis that Eb may behave as a biological response modifier when used as an antitumor agent. Eb is worthy of further study in developing a new antineoplastic and immunity enhancing agent in the light of its antitumor activity, immunocompetence and specific distribution in liver, lungs, kidneys, bone, and spleen.