期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
美国RTP公司增加抗菌工程塑料品种
1
《塑料加工》 2003年第2期5-5,共1页
关键词 美国RTP公司 抗菌工程塑料 品种 热塑性工程塑料 热塑性弹性体 配方
下载PDF
植物抗菌基因工程的研究策略及进展 被引量:1
2
作者 唐梅 《乐山师范学院学报》 2002年第4期56-58,共3页
植物抗菌基因工程是目前植物抗病育种的热点之一 .本文就近几年植物抗菌基因工程中植物抗病基因、病原菌无毒基因、植物防卫基因。
关键词 植物基因工程 研究策略 病原无毒基因 蛋白基因 病育种 研究进展 植物防卫基因
下载PDF
抗菌植物基因工程进展
3
作者 胡廷章 《生物学教学》 2000年第6期5-7,共3页
目前,抗菌植物基因工程采用的方法主要有:激活植物的抗病机制、导入植物防御反应相关基因、导入降解或抑制病原菌致病因子的基因、替换植物细胞中对毒素敏感的酶、导入抗菌蛋白的编码基因、利用人工编制的细胞死亡等。
关键词 植物工程 病害防治 病基因 细胞死亡
下载PDF
酿酒酵母表达基因工程抗菌肽Pa-AMP05的抗菌活性研究 被引量:1
4
作者 张捷 郑文官 +3 位作者 黄杰 董清风 彭永鹤 李永新 《中国饲料》 北大核心 2011年第6期24-26,共3页
本实验采用琼脂扩散和稀释法,对发酵得到的基因工程抗菌肽Pa-AMP05的抗菌活性进行研究,结果表明,抗菌肽Pa-AMP05具有较强的抑制大肠杆菌与金黄色葡萄球菌的活性,对金黄色葡萄球菌的最低抑菌浓度(MIC)为15.625μg/mL,对大肠杆菌的最低抑... 本实验采用琼脂扩散和稀释法,对发酵得到的基因工程抗菌肽Pa-AMP05的抗菌活性进行研究,结果表明,抗菌肽Pa-AMP05具有较强的抑制大肠杆菌与金黄色葡萄球菌的活性,对金黄色葡萄球菌的最低抑菌浓度(MIC)为15.625μg/mL,对大肠杆菌的最低抑菌浓度(MIC)为31.25μg/mL;且其浓度与抗菌活性呈线性正相关。 展开更多
关键词 基因工程 OD600值 最低抑浓度 活性 线性回归
下载PDF
植物抗病基因工程策略及其前景 被引量:6
5
作者 宋从凤 王金生 《世界农业》 北大核心 2001年第10期39-41,共3页
关键词 应用前景 植物病基因工程 工程策略 解毒基因工程 蛋白基因工程
下载PDF
新型抗菌材料在医疗卫生行业的应用
6
作者 李荣 《建材工业信息》 2003年第8期35-35,共1页
关键词 材料 医疗卫生 抗菌工程 二氧化鈦 除尘 空气净化
下载PDF
新型抗菌药物PH-SA问世
7
《中国医药导刊》 2004年第3期194-194,共1页
关键词 药物 PH-SA 金葡工程多肽 效果
下载PDF
Plant biotechnology:a case study of Bacillus thuringiensis(Bt) and its application to the future of genetic engineered trees 被引量:1
8
作者 唐巍 Latoya Harris Ronald J.Newton 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期1-10,J001,共11页
Agricultural productivity may be raised in a sustainable way by many different technologies such as biological fertilizers, soil and water conservation, biodiversity conservation, improved pest control, and changes in... Agricultural productivity may be raised in a sustainable way by many different technologies such as biological fertilizers, soil and water conservation, biodiversity conservation, improved pest control, and changes in land ownership and distribution. Of these measures, biotechnology applications probably hold the most promise in augmenting conventional agricultural productivity, because biotechnology applications give not only the need to increase production, but also protect the environment and conserving natural resources for future generations. Biotechnology applications will have the possibilities to increase productivity and food availability through better agronomic performance of new varieties, including resistance to pests; rapid multiplication of disease-free plants; ability to obtain natural plant products using tissue culture; diagnosis of diseases of plants and livestock; manipulation of reproduction methods increasing the efficiency of breeding; and the provision of incentives for greater participation by the private sector through investments. Insect resistance through the transfer of a gene for resistance fromBacillus thuringiensis (Bt) is one of the most advanced biotechnology applications already being commercialized in many parts of the world. This paper reviews the development and the status ofBt technology and application ofBt transgenic plants in current agriculture, and discusses specific issues related to the transfer of the technology to the future of genetic engineered trees with emphasis on conifers. Key words Agricultural productivity - Bacillus thuringiensis - Genetic engineering - Insect resistance - Trees CLC number Q812 - S763.306 Document code A Biography: Tang Wei (1964-), male, Ph. Doctor, Research associate, Department of Biology, Howell Science Complex, East Carelina University, Greenville, NC 27858-4353, USA.Responsible editor: Chal Ruihai 展开更多
关键词 Agricultural productivity Bacillus thuringiensis Genetic engineering Insect resistance Trees
下载PDF
Cloning and Efficient Expression of Bacillus sp. BH072 tas A Gene in Escherichia coli 被引量:2
9
作者 韩烨 樊洁 +2 位作者 周志江 檀茜倩 赵鑫 《Transactions of Tianjin University》 EI CAS 2015年第1期26-31,共6页
The Bacillus strain BH072 isolated from a honey sample showed strong antifungal activity against phytopathogen. Gene cloning test demonstrated that the strain had a tasA gene encoding an antifungal TasA protein. Altho... The Bacillus strain BH072 isolated from a honey sample showed strong antifungal activity against phytopathogen. Gene cloning test demonstrated that the strain had a tasA gene encoding an antifungal TasA protein. Although the wild strain simultaneously produced various antifungal substances, only the physicochemical property and antifungal activity of TasA protein were unclear due to the difficulty in extraction. In this study, tasA gene encoding the protein from Bacillus sp. BH072 was amplified by using the polymerase chain reaction (PCR) method and cloned into pET 28a (+) vector, and then expressed in host cells Escherichia coli BL21 (DE3). The expressed proteins were collected by centrifugation and ultrasonic treatment, and then purified by using nickel-nitrilotriacetic acid (Ni-NTA) metal affinity column and dialysis methods. The result of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) test showed that an expected protein band appeared with a size of 31 kDa. The expressed products possessed antifungal activity against the phytopathogenic indicator strain Botrytis cinerea. A genetically engineered strain tasA orE, coli was established in this study which can efficiently express Tas A protein. 展开更多
关键词 BACILLUS Tas A cloning and expression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部