期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
紫色土团聚体抗蚀特征研究 被引量:32
1
作者 骆东奇 侯春霞 +2 位作者 魏朝富 谢德体 朱波 《水土保持学报》 CSCD 北大核心 2003年第2期20-23,27,共5页
从水稳性、力稳性和化学稳定性3方面研究了紫色土团聚体稳定性和抗蚀性特征及内在机理,结果表明:不同利用方式土壤>3mm,>1mm,>0.25mm水稳性团聚体的含量均表现为荒草地>林地>园地>耕地,结构破坏率表现为耕地>园地&... 从水稳性、力稳性和化学稳定性3方面研究了紫色土团聚体稳定性和抗蚀性特征及内在机理,结果表明:不同利用方式土壤>3mm,>1mm,>0.25mm水稳性团聚体的含量均表现为荒草地>林地>园地>耕地,结构破坏率表现为耕地>园地>林地>荒草地;力稳性参数"原始稳定性"表现出荒草地>林地>园地>耕地,"崩解速率"表现为耕地>园地>林地>荒草地,不同利用方式土壤团聚体力稳性表现为荒草地>林地>园地>耕地;蓬莱镇组、遂宁组和沙溪庙组3种母质发育的土壤,遂宁组母质发育土壤抗蚀性最强,不同利用方式抗蚀强弱表现为荒草地>林地>园地>耕地;土壤有机质和粘粒含量显著地影响土壤团聚体的"原始稳定性"和"崩解速率",是影响土壤团聚体抗蚀性的主要内在因素。 展开更多
关键词 紫色土 团聚体 抗蚀特征 水稳性 力稳性 化学稳定性 土壤肥力
下载PDF
Effect of Root Architecture on Structural Stability and Erodibility of Topsoils during Concentrated Flow in Hilly Loess Plateau 被引量:13
2
作者 LI Qiang LIU Guobin +2 位作者 ZHANG Zheng TUO Dengfeng XU Mingxiang 《Chinese Geographical Science》 SCIE CSCD 2015年第6期757-764,共8页
Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of ... Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau. 展开更多
关键词 fibrous roots tap roots root density soil structural properties soil anti-scouribility hilly Loess Plateau China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部