In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by f...In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by flow coat method on the surface of industrially pure titanium TB1-0. The effects of nano-size nickel particles on the wear resistance and high temperature oxidation resistance of coating substrate system were investigated through oxidation kinetics experiment and wear resistance test. The morphologies of the specimens were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that the high temperature ultra fine ceramic coating has notable protection effect on industrially pure titanium TB1-0 from oxidation. The oxidation and wear resistance properties of the coating can be effectively improved by adding nano-size nickel particles. The oxidative mass gain of the specimen decreases from 11.33 mg·cm-2 to 5.25 mg·cm-2 and the friction coefficient decreases from 1.1 to 0.6 by adding nano-size nickel particles, and the coating containing 10% (mass fraction) nano-size nickel shows the optimum properties.展开更多
SalNa (sodium salinomycin) reacts with divalent transition metal ions of Co(II), Ni(II), Cu(II) and Zn(II) to produce novel compounds characterized by various spectroscopic methods. The interaction of metal ...SalNa (sodium salinomycin) reacts with divalent transition metal ions of Co(II), Ni(II), Cu(II) and Zn(II) to produce novel compounds characterized by various spectroscopic methods. The interaction of metal (II) ions with SalNa results in the formation of mononuclear complexes of a general composition of [M(Sal)2·(H2O)2] nH2O (n = 0 or 2) where the divalent cations replace Na~ ions from the cavity of initial compound. The new compounds (disalinomycinates) possess an enhanced antibacterial activity against Gram-positive microorganisms as compared to both SalNa and SalH (salinomycinic acid), respectively. The metal (II) complexes manifest strong concentration dependent cytotoxic effect in experiments using human leukemia cell lines. The complexes of Co0I) and Cu(lI) proved to exert superior activity as compared to the Ni(II) and Zn(II) analogues and are much more cytotoxic than SalNa and SalH. Further studies should be conducted to determine the therapeutic indexes of the new compounds.展开更多
The oxidation behaviors of Ni-16Cr-xAl (x=4.5%, 9.0%, mass fraction) superalloy foams in air at 1000℃ were investigated. The effects of AI content on the resistance to high temperature oxidation were examined. The ...The oxidation behaviors of Ni-16Cr-xAl (x=4.5%, 9.0%, mass fraction) superalloy foams in air at 1000℃ were investigated. The effects of AI content on the resistance to high temperature oxidation were examined. The oxidation mechanisms of the foams were discussed. The results show that the resistance to the oxidation of the Ni-16Cr-xA1 based alloy at 1 000 ℃ increases with the content of A1 increasing from 4.5% to 9.0%. Complex oxide products are formed on the surface of the superalloy foams after the oxidation. Cr203 and A1203 are the predominant oxides for the scales of the foams with 4.5% A1 and 9% A1, respectively. Excellent high temperature oxidation resistance and superior pore conformation stability for the Ni-16Cr-xA1 based superalloy foam with 9% A1 can be mainly attributed to the formation of relatively continuous and protective A1203 oxides on the surface of the foam.展开更多
文摘In order to improve the wear resistance and high temperature oxidation resistance of titanium and titanium alloy, the high temperature ultra fine ceramic coating containing nano-size nickel particles was prepared by flow coat method on the surface of industrially pure titanium TB1-0. The effects of nano-size nickel particles on the wear resistance and high temperature oxidation resistance of coating substrate system were investigated through oxidation kinetics experiment and wear resistance test. The morphologies of the specimens were examined by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The results show that the high temperature ultra fine ceramic coating has notable protection effect on industrially pure titanium TB1-0 from oxidation. The oxidation and wear resistance properties of the coating can be effectively improved by adding nano-size nickel particles. The oxidative mass gain of the specimen decreases from 11.33 mg·cm-2 to 5.25 mg·cm-2 and the friction coefficient decreases from 1.1 to 0.6 by adding nano-size nickel particles, and the coating containing 10% (mass fraction) nano-size nickel shows the optimum properties.
文摘SalNa (sodium salinomycin) reacts with divalent transition metal ions of Co(II), Ni(II), Cu(II) and Zn(II) to produce novel compounds characterized by various spectroscopic methods. The interaction of metal (II) ions with SalNa results in the formation of mononuclear complexes of a general composition of [M(Sal)2·(H2O)2] nH2O (n = 0 or 2) where the divalent cations replace Na~ ions from the cavity of initial compound. The new compounds (disalinomycinates) possess an enhanced antibacterial activity against Gram-positive microorganisms as compared to both SalNa and SalH (salinomycinic acid), respectively. The metal (II) complexes manifest strong concentration dependent cytotoxic effect in experiments using human leukemia cell lines. The complexes of Co0I) and Cu(lI) proved to exert superior activity as compared to the Ni(II) and Zn(II) analogues and are much more cytotoxic than SalNa and SalH. Further studies should be conducted to determine the therapeutic indexes of the new compounds.
基金Project (51134003) supported by the National Natural Science Foundation of China
文摘The oxidation behaviors of Ni-16Cr-xAl (x=4.5%, 9.0%, mass fraction) superalloy foams in air at 1000℃ were investigated. The effects of AI content on the resistance to high temperature oxidation were examined. The oxidation mechanisms of the foams were discussed. The results show that the resistance to the oxidation of the Ni-16Cr-xA1 based alloy at 1 000 ℃ increases with the content of A1 increasing from 4.5% to 9.0%. Complex oxide products are formed on the surface of the superalloy foams after the oxidation. Cr203 and A1203 are the predominant oxides for the scales of the foams with 4.5% A1 and 9% A1, respectively. Excellent high temperature oxidation resistance and superior pore conformation stability for the Ni-16Cr-xA1 based superalloy foam with 9% A1 can be mainly attributed to the formation of relatively continuous and protective A1203 oxides on the surface of the foam.