The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Lon...The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. How- ever, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be car- ried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that darn safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.展开更多
The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and...The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and all their operational and safety related support systems,the storage of spent fuel in temporary or permanent storage facilities also poses a seismic risk. This seismic risk is typically assessed with state-of-the-art modeling and analytical tools that capture everything from the ground rupture or source of the earthquake to the site specific ground shaking,taking geotechnical parameters and soilfoundationstructureinteraction (SFSI) into account to the non-linear structural response of the reactor core,the containment structure,the core cooling system and the emergency cooling system(s),to support systems,piping systems and non-structural components,and finally the performance of spent fuel storage in the probabilistically determined operational basis earthquake (OBE) or the safe shutdown earthquake (SSE) scenario. The best and most meaningful validation and verification of these advanced analytical tools is in the form of full or very large scale experimental testing,designed and conducted in direct support of model and analysis tool calibration. This paper outlines the principles under which such calibration testing should be conducted and illustrates with examples the kind of testing and parameter evaluation required.展开更多
文摘The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. How- ever, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be car- ried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that darn safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.
文摘The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and all their operational and safety related support systems,the storage of spent fuel in temporary or permanent storage facilities also poses a seismic risk. This seismic risk is typically assessed with state-of-the-art modeling and analytical tools that capture everything from the ground rupture or source of the earthquake to the site specific ground shaking,taking geotechnical parameters and soilfoundationstructureinteraction (SFSI) into account to the non-linear structural response of the reactor core,the containment structure,the core cooling system and the emergency cooling system(s),to support systems,piping systems and non-structural components,and finally the performance of spent fuel storage in the probabilistically determined operational basis earthquake (OBE) or the safe shutdown earthquake (SSE) scenario. The best and most meaningful validation and verification of these advanced analytical tools is in the form of full or very large scale experimental testing,designed and conducted in direct support of model and analysis tool calibration. This paper outlines the principles under which such calibration testing should be conducted and illustrates with examples the kind of testing and parameter evaluation required.