期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
地下隧道抗震安全性分析方法 被引量:3
1
作者 梁建文 于军港 巴振宁 《防灾减灾工程学报》 CSCD 北大核心 2016年第1期24-30,43,共8页
针对设计地震动的变异性,提出了地下隧道抗震安全性分析的蒙特卡罗方法。1建立地下隧道非线性地震响应分析模型。采用粘弹性边界方法和地震动输入等效节点力方法模拟半无限场地的地震激励,结合通用有限元软件ANSYS,建立地下隧道地震响... 针对设计地震动的变异性,提出了地下隧道抗震安全性分析的蒙特卡罗方法。1建立地下隧道非线性地震响应分析模型。采用粘弹性边界方法和地震动输入等效节点力方法模拟半无限场地的地震激励,结合通用有限元软件ANSYS,建立地下隧道地震响应分析模型,模型采用等效线性化方法模拟土体非线性,采用瑞利阻尼和材料阻尼相结合方法模拟土体阻尼,分别考虑衬砌中混凝土和钢筋的非线性,并考虑衬砌和土体之间的接触问题。2确定设计地震动,然后利用模拟产生目标谱符合某一设计地震动时变功率谱的非平稳地震动模拟方法,产生若干条与设计地震动具有同一统计特征的非平稳地震动。3进行样本地震动激励下的地下隧道非线性地震响应分析,求得地下隧道地震响应的变异性。该研究为地下隧道抗震安全性分析提供了一种简单实用的方法,对地下隧道抗震设计有一定的参考价值。 展开更多
关键词 地下隧道 抗震安全性分析 设计地震动 非线性地震响应分析 蒙特卡罗方法
下载PDF
轻轨铁路站桥结构体系抗震安全性分析
2
作者 李忠献 张媛 +1 位作者 丁阳 黄健 《结构工程师》 2003年第z1期422-426,共5页
本文结合地处高烈度地震区的天津轻轨工程,研究轻轨铁路站桥结构体系的抗震安全性,研究结果表明,按照<铁路工程抗震设计规范>(GBJ111-87)和<建筑抗震设计规范>(GB50011-2001)所规定的反应谱值所设计的站桥结构体系的抗震安... 本文结合地处高烈度地震区的天津轻轨工程,研究轻轨铁路站桥结构体系的抗震安全性,研究结果表明,按照<铁路工程抗震设计规范>(GBJ111-87)和<建筑抗震设计规范>(GB50011-2001)所规定的反应谱值所设计的站桥结构体系的抗震安全性较差,必须按轻轨铁路建设场地地震评价所给定的反应谱值对站桥结构体系进行时程分析,才能保证轻轨铁路的抗震安全性. 展开更多
关键词 轻轨铁路 站桥结构体系 抗震安全性 反应谱 时程分析
下载PDF
惠安县工人俱乐部石结构安全性和抗震性能分析
3
作者 叶德传 卓尚木 +3 位作者 李家训 张小云 鄢飞 陈国钦 《福建建筑》 2000年第B10期82-83,共2页
本文通过典型实例介绍了石结构建筑的安全性和抗震性能评定内容及步骤 ,可供类似工程参考。
关键词 石结构 安全性抗震性能分析
下载PDF
Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams 被引量:2
4
作者 Martin Wieland 《Engineering》 SCIE EI 2016年第3期325-331,共7页
The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Lon... The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. How- ever, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be car- ried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that darn safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper. 展开更多
关键词 DAMS Earthquake design Earthquake safety Existing dams Design criteria Seismic hazard SUSTAINABILITY Service life
下载PDF
Seismic hazard mitigation for nuclear power plant
5
作者 Frieder Seible 《Engineering Sciences》 EI 2013年第3期2-9,共8页
The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and... The seismic safety of nuclear power plan(tNPP)has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations. In addition to the actual NPP and all their operational and safety related support systems,the storage of spent fuel in temporary or permanent storage facilities also poses a seismic risk. This seismic risk is typically assessed with state-of-the-art modeling and analytical tools that capture everything from the ground rupture or source of the earthquake to the site specific ground shaking,taking geotechnical parameters and soilfoundationstructureinteraction (SFSI) into account to the non-linear structural response of the reactor core,the containment structure,the core cooling system and the emergency cooling system(s),to support systems,piping systems and non-structural components,and finally the performance of spent fuel storage in the probabilistically determined operational basis earthquake (OBE) or the safe shutdown earthquake (SSE) scenario. The best and most meaningful validation and verification of these advanced analytical tools is in the form of full or very large scale experimental testing,designed and conducted in direct support of model and analysis tool calibration. This paper outlines the principles under which such calibration testing should be conducted and illustrates with examples the kind of testing and parameter evaluation required. 展开更多
关键词 seismic design seismic safety probabilistic hazard large scale testing full scale testing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部