Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ...Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.展开更多
The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heat...The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heated at 1 000 ℃ in vacuum oven of 1 kPa for 5 h. The properties of coatings were investigated. The results indicate that Fe2B appears after milling for 15 h in the powder at room temperature, a part of ternary borides (Mo2FeB2) are generated in powder sintered at 900 ℃. The coatings are composed of the major phases Mo2FeB2 and a-Fe, a little of Fe203, FeO and some pores. The bonding strength between the substrate and the ceramic coating is 32.73 MPa, the thermal-shock times is about 43 and the wear resistance is enhanced by approximately 5.28 times compared with that of the substrate, respectively. The comprehensive properties of Mo2FeB2 cermet coatings can be imoroved further after vacuum heat-treatment at 1 000 ℃ for 5 h.展开更多
To investigate the feasibility and seismic performance of the horizontal joints in an innovative precast shear wall system, two test walls were fabricated, and the monotonic and cyclic loading tests were performed on ...To investigate the feasibility and seismic performance of the horizontal joints in an innovative precast shear wall system, two test walls were fabricated, and the monotonic and cyclic loading tests were performed on the two test walls, respectively. Then, the lateral load-top displacement curves, load beating capacity, ductility, lateral stiffness, strains of steel bars, strain distribution on the connecting steel frame (CSF), and relative slippages between the CSF and embedded limbic steel frame (ELSF) were discussed in detail. The test results show that the load bearing capacity and ductility of the test wall are both favorable with a displacement ductility factor of more than 3.7. The normal and shear stresses in the CSF except for the compression end are far smaller than the yield stresses throughout the test procedure. Certain slippages of about 1.13 mm occurs between the CSF and ELSF on the compression side of the test wall, while almost no slippages occurs on the tension side. The seismic performance of the test wall is favorable and the new-type scheme of the horizontal joints is both feasible and reliable.展开更多
A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in ...A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in construction. The moment from superstructure can be effectively transferred to substructure, and the plates provided for shear transferring can withstand the majority of total horizontal force. With static cyclic loading test, useful experimental data is obtained on the new type of connection of steel superstructure and concrete substructure. As a result, the stress transfer mechanism of the rigid connection can be made clearly and the seismic performance of this structure can also be clarified. Compared computed strength and ductility with actual results, it can be found that this type of connection has good energy absorption capacity in spite of large displacement and no local buckling arises at the locations where stress concentration occurs. Because of doing away with the expensive bearing, this new type of composite structure can be expected to construct a bridge with high seismic resistant capacity thus saving in total construction cost.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3...3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.展开更多
The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineeri...The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.展开更多
Stability analysis of gravity retaining wall was currently based on the assumption that the wall had no embedment depth. The effect of earth berm was usually neglected. The present work highlighted the importance of e...Stability analysis of gravity retaining wall was currently based on the assumption that the wall had no embedment depth. The effect of earth berm was usually neglected. The present work highlighted the importance of embedment depth when assessing the seismic stability of gravity retaining walls with the pattern of pure rotation. In the framework of upper bound theorem of limit analysis, pseudo-static method was applied into two groups of parallel rigid soil slices methods in order to account for the effect of embedment depth on evaluating the critical acceleration of wall-soil system. The present analytical solution is identical to the results obtained from using limit equilibrium method, and the two methods are based on different theory backgrounds. Parameter analysis indicates that the critical acceleration increases slowly when the ratio of the embedment depth to the total height of the wall is from 0 to 0.15 and increases drastically when the ratio exceeds 0.15.展开更多
The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Lon...The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. How- ever, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be car- ried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that darn safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.展开更多
Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seism...Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.展开更多
Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminat...Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminate cement as binders. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding, the specimens were heat treated at 1 000 ℃, 1 300℃ and 1 500℃ for 3 h, respectively. The bulk density ( BD), permanent linear change ( PLC), modulus of rupture(MOR) and clod crushing strength(CCS), thermal expansion coefficient and thermal shock resistance were examined. The results show that there is no obvious effect on adjusting permanent linear change and bulk density of castables by adding different particle sizes of cordierite at low temperature and intermediate temperature. Modulus of rupture of castable increase with the decreasing of the particle sizes of cordierite after heat treated by 1 000 ℃ and 1 300℃. In this experiment, thermal shock resistance of the castable with cordierite whose particle size is 0 - 1 mm is the best.展开更多
This paper is dedicated to the study of the seismic performance of an existing RC (reinforced concrete) bridge localized in a region of moderate seismicity. The bridge has six spans and piers with very different hei...This paper is dedicated to the study of the seismic performance of an existing RC (reinforced concrete) bridge localized in a region of moderate seismicity. The bridge has six spans and piers with very different heights, three of which are monolithically connected to the deck. To understand the roles of the different pier sizes in the overall behavior, several analyses were carried out in the longitudinal direction: (1) linear dynamic approach; (2) non-linear static approach; (3) non-linear dynamic approach. Linear dynamic analysis was made in order to design the bridge for the ultimate limit state considering the largest value of the ductility factor. No safety verification was made for the other loads. Using non-linear static analyses, sensitivity was performed to check the influence of reinforcement quantities of each pier on the overall behavior of the bridge under Lisbon seismic action. For the non-linear dynamic approach, a series of strong motion records compatible with the EC-8 spectrum for Lisbon area were generated. The very same combinations of reinforcement quantities were studied. Comparisons between static and dynamic non-linear analysis were made to confirm the validity of the first one in the case under analysis, where the period of vibration is quite high.展开更多
Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite havi...Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite having suffered several earthquakes over time has remained stable without collapsing. This article presents the research carried out on stone masonry wails with dry joint, without mortar, subject to a seismic action. In order to understand the behavior of the masonry without mortar, it designs a Grid mode/ of Finite Elements. From the results, it is concluded that these walls with a certain thickness have ductility that allows them to withstand high displacement and rotation values, thus accommodating the movement of the earth subject to an earthquake. The individual stone blocks move relative to each other through rotations and displacements, which are processed in the free joints of any mortar. The joints work as energy sinks. The free movements in the joints dissipate the energy transmitted by the earthquake, not causing in this way the rupture of the stone blocks. The goal of this article is to understand the p importance of lack of mortar in the seismic behavior of the mansonry.展开更多
The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analys...The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analysis of the seismic behaviour of plan-asymmetric structures are herein presented and the concepts of "Polar Spectrum" and limit domains are discussed. In particular, the capacity of the structure is described by using the limit domains based on the Non Linear Static Procedures, while the seismic demand is analysed by introducing a new representation of the spectral response. This representation is based on the construction of a spectral surface obtained by the spectral seismic response for different in-plan directions and the in-plan projection of this surface is herein defined "Polar Spectrum". The obtained results for two benchmark structures, verified by means of non-linear incremental dynamic analyses, have pointed out that non-linear static analyses, carried out for different in-plan directions of the incoming seismic action, have allowed us to accurately evaluate the least seismic resistant directions.展开更多
This paper proposes an innovative low-cost isolator with lightweight and cost-effective features for use in low-rise residential buildings.The low-cost laminated isolator is formed by plastic shims with unsaturated po...This paper proposes an innovative low-cost isolator with lightweight and cost-effective features for use in low-rise residential buildings.The low-cost laminated isolator is formed by plastic shims with unsaturated polyester fiber reinforcement between rubber layers.Performance tests are systematically carried out to characterize the isolator in terms of mechanic behavior(e.g.,compression,shear,and their relationship),dynamic properties(e.g.,damping),and ultimate states.A design guideline and associated criteria of the low-cost isolator are also provided and discussed in this study.To investigate more detailed behavior,a finite element model of the isolator is developed in ABAQUS and calibrated by the experimental data.The research presented in this paper makes significant contributions to the evaluation of the peak stress and strain demands on isolator’s components and provides technical support for the design and manufacturing of this new type of isolator.展开更多
基金National Natural Science Foundation of China (52072088, 52072089)Natural Science Foundation of Heilongjiang Province (LH2023E061)+1 种基金Scientific and Technological Innovation Leading Talent of Harbin Manufacturing (2022CXRCCG001)Fundamental Research Funds for the Central Universities (3072023CFJ1003)。
文摘Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.
基金Project(2007T069)supported by Liaoning Education Department Innovation Team,China
文摘The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heated at 1 000 ℃ in vacuum oven of 1 kPa for 5 h. The properties of coatings were investigated. The results indicate that Fe2B appears after milling for 15 h in the powder at room temperature, a part of ternary borides (Mo2FeB2) are generated in powder sintered at 900 ℃. The coatings are composed of the major phases Mo2FeB2 and a-Fe, a little of Fe203, FeO and some pores. The bonding strength between the substrate and the ceramic coating is 32.73 MPa, the thermal-shock times is about 43 and the wear resistance is enhanced by approximately 5.28 times compared with that of the substrate, respectively. The comprehensive properties of Mo2FeB2 cermet coatings can be imoroved further after vacuum heat-treatment at 1 000 ℃ for 5 h.
文摘To investigate the feasibility and seismic performance of the horizontal joints in an innovative precast shear wall system, two test walls were fabricated, and the monotonic and cyclic loading tests were performed on the two test walls, respectively. Then, the lateral load-top displacement curves, load beating capacity, ductility, lateral stiffness, strains of steel bars, strain distribution on the connecting steel frame (CSF), and relative slippages between the CSF and embedded limbic steel frame (ELSF) were discussed in detail. The test results show that the load bearing capacity and ductility of the test wall are both favorable with a displacement ductility factor of more than 3.7. The normal and shear stresses in the CSF except for the compression end are far smaller than the yield stresses throughout the test procedure. Certain slippages of about 1.13 mm occurs between the CSF and ELSF on the compression side of the test wall, while almost no slippages occurs on the tension side. The seismic performance of the test wall is favorable and the new-type scheme of the horizontal joints is both feasible and reliable.
文摘A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in construction. The moment from superstructure can be effectively transferred to substructure, and the plates provided for shear transferring can withstand the majority of total horizontal force. With static cyclic loading test, useful experimental data is obtained on the new type of connection of steel superstructure and concrete substructure. As a result, the stress transfer mechanism of the rigid connection can be made clearly and the seismic performance of this structure can also be clarified. Compared computed strength and ductility with actual results, it can be found that this type of connection has good energy absorption capacity in spite of large displacement and no local buckling arises at the locations where stress concentration occurs. Because of doing away with the expensive bearing, this new type of composite structure can be expected to construct a bridge with high seismic resistant capacity thus saving in total construction cost.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
文摘3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.
基金Projects(51378077,51478047,51778066)supported by the National Natural Science Foundation of ChinaProject(D20151304)supported by Science and Technology Research Project of Education Department of Hubei Province,ChinaProject(2017CFA070)supported by Hubei Provincial Natural Science Foundation,China
文摘The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions.
基金Project(41472245)supported by the National Natural Science Foundation of ChinaProject(CQGT-KJ-2014049)supported by the Chongqing Administration of Land,Resources and Housing,ChinaProject(106112014CDJZR200009)supported by the Fundamental Research Funds for the Central Universities,China
文摘Stability analysis of gravity retaining wall was currently based on the assumption that the wall had no embedment depth. The effect of earth berm was usually neglected. The present work highlighted the importance of embedment depth when assessing the seismic stability of gravity retaining walls with the pattern of pure rotation. In the framework of upper bound theorem of limit analysis, pseudo-static method was applied into two groups of parallel rigid soil slices methods in order to account for the effect of embedment depth on evaluating the critical acceleration of wall-soil system. The present analytical solution is identical to the results obtained from using limit equilibrium method, and the two methods are based on different theory backgrounds. Parameter analysis indicates that the critical acceleration increases slowly when the ratio of the embedment depth to the total height of the wall is from 0 to 0.15 and increases drastically when the ratio exceeds 0.15.
文摘The basic element in any sustainable dam project is safety, which includes the following safety elements: O structural safety, dam safety monitoring, operational safety and maintenance, and emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. How- ever, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be car- ried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that darn safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.
基金founded by the Earthquake Science and Technology Spark Plan of China(XH12063)
文摘Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.
文摘Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminate cement as binders. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding, the specimens were heat treated at 1 000 ℃, 1 300℃ and 1 500℃ for 3 h, respectively. The bulk density ( BD), permanent linear change ( PLC), modulus of rupture(MOR) and clod crushing strength(CCS), thermal expansion coefficient and thermal shock resistance were examined. The results show that there is no obvious effect on adjusting permanent linear change and bulk density of castables by adding different particle sizes of cordierite at low temperature and intermediate temperature. Modulus of rupture of castable increase with the decreasing of the particle sizes of cordierite after heat treated by 1 000 ℃ and 1 300℃. In this experiment, thermal shock resistance of the castable with cordierite whose particle size is 0 - 1 mm is the best.
文摘This paper is dedicated to the study of the seismic performance of an existing RC (reinforced concrete) bridge localized in a region of moderate seismicity. The bridge has six spans and piers with very different heights, three of which are monolithically connected to the deck. To understand the roles of the different pier sizes in the overall behavior, several analyses were carried out in the longitudinal direction: (1) linear dynamic approach; (2) non-linear static approach; (3) non-linear dynamic approach. Linear dynamic analysis was made in order to design the bridge for the ultimate limit state considering the largest value of the ductility factor. No safety verification was made for the other loads. Using non-linear static analyses, sensitivity was performed to check the influence of reinforcement quantities of each pier on the overall behavior of the bridge under Lisbon seismic action. For the non-linear dynamic approach, a series of strong motion records compatible with the EC-8 spectrum for Lisbon area were generated. The very same combinations of reinforcement quantities were studied. Comparisons between static and dynamic non-linear analysis were made to confirm the validity of the first one in the case under analysis, where the period of vibration is quite high.
文摘Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite having suffered several earthquakes over time has remained stable without collapsing. This article presents the research carried out on stone masonry wails with dry joint, without mortar, subject to a seismic action. In order to understand the behavior of the masonry without mortar, it designs a Grid mode/ of Finite Elements. From the results, it is concluded that these walls with a certain thickness have ductility that allows them to withstand high displacement and rotation values, thus accommodating the movement of the earth subject to an earthquake. The individual stone blocks move relative to each other through rotations and displacements, which are processed in the free joints of any mortar. The joints work as energy sinks. The free movements in the joints dissipate the energy transmitted by the earthquake, not causing in this way the rupture of the stone blocks. The goal of this article is to understand the p importance of lack of mortar in the seismic behavior of the mansonry.
文摘The goal of this work is to investigate the seismic behaviour of plan-asymmetric structures by considering the least seismic-resistant directions and the spatial features of the seismic event. New tools for the analysis of the seismic behaviour of plan-asymmetric structures are herein presented and the concepts of "Polar Spectrum" and limit domains are discussed. In particular, the capacity of the structure is described by using the limit domains based on the Non Linear Static Procedures, while the seismic demand is analysed by introducing a new representation of the spectral response. This representation is based on the construction of a spectral surface obtained by the spectral seismic response for different in-plan directions and the in-plan projection of this surface is herein defined "Polar Spectrum". The obtained results for two benchmark structures, verified by means of non-linear incremental dynamic analyses, have pointed out that non-linear static analyses, carried out for different in-plan directions of the incoming seismic action, have allowed us to accurately evaluate the least seismic resistant directions.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2012CB723304)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13057)+1 种基金the Ministry of Education Program for New Century Excellent Talents(Grant No.NCET-11-0914)the National Natural Science Foundation of China(Grant No.51278138)
文摘This paper proposes an innovative low-cost isolator with lightweight and cost-effective features for use in low-rise residential buildings.The low-cost laminated isolator is formed by plastic shims with unsaturated polyester fiber reinforcement between rubber layers.Performance tests are systematically carried out to characterize the isolator in terms of mechanic behavior(e.g.,compression,shear,and their relationship),dynamic properties(e.g.,damping),and ultimate states.A design guideline and associated criteria of the low-cost isolator are also provided and discussed in this study.To investigate more detailed behavior,a finite element model of the isolator is developed in ABAQUS and calibrated by the experimental data.The research presented in this paper makes significant contributions to the evaluation of the peak stress and strain demands on isolator’s components and provides technical support for the design and manufacturing of this new type of isolator.