The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and th...The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.展开更多
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens...To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.展开更多
基金Project(N2018G034)supported by China Railway Corporation。
文摘The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.
基金Supported by National Natural Science Foundation of China (No. 50878037)
文摘To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.