In recent years, increasingly evidences show that autophagy plays an important role in the pathogenesis and development of liver diseases, and the relationship between them has increasingly become a focus of concern. ...In recent years, increasingly evidences show that autophagy plays an important role in the pathogenesis and development of liver diseases, and the relationship between them has increasingly become a focus of concern. Autophagy refers to the process through which the impaired organelles, misfolded protein, and intruding microorganisms is degraded by lysosomes to maintain stability inside cells. This article states the effect of autophagy on liver diseases (hepatic fibrosis, fatty liver, viral hepatitis, and liver cancer), which aims to provide a new direction for the treatment of liver diseases.展开更多
This paper shows that there are two different phases in economics. These are the primal and dual problems. In the primal problem phase, capital expenditures of private corporations grow, creating an impetus towards th...This paper shows that there are two different phases in economics. These are the primal and dual problems. In the primal problem phase, capital expenditures of private corporations grow, creating an impetus towards the maximization of profits. In this case, as Adam Smith once wrote, the "invisible hand of God" works to lead the economy to a significant growth. This paper defines the concept of economic growth, bubble economy and destruction of bubble economy. And this paper describes why bubble economy occurs and crashes. In the process, this paper shows that primal economy exists before bubble economy and dual economy exists after destruction of bubble economy.展开更多
The Double Folding (DF) model calculation of the internuclear potential in heavy-ion interactions when the participant nuclei are deformed in their ground states involves a six-dimensional integral. Using the multip...The Double Folding (DF) model calculation of the internuclear potential in heavy-ion interactions when the participant nuclei are deformed in their ground states involves a six-dimensional integral. Using the multipole expansion in these calculations, the DF six-dimensional integral reduce to the sum of the products of three single-dimensional integrals. In this paper we have presented a procedure for the calculation of the radius dependent functions in the multipole expansion of the nuclear density and their Fourier transforms. We have also reduced the DF model integrals to the sum of the single dimensional integrals using the obtained relations for the radius dependent functions in the multipole expansion and their Fourier transforms.展开更多
Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be -380 meV/A (or about 800 meV per edge atom) a...Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be -380 meV/A (or about 800 meV per edge atom) and -50 meV/A (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.展开更多
We study molybdenum disulfide (MoS2) structures generated by folding single-layer and bilayer MoS2 flakes. We find that this modified layer stacking leads to a decrease in the interlayer coupling and an enhancement ...We study molybdenum disulfide (MoS2) structures generated by folding single-layer and bilayer MoS2 flakes. We find that this modified layer stacking leads to a decrease in the interlayer coupling and an enhancement of the photoluminescence emission yield. We additionally find that folded single-layer MoS2 structures show a contribution to photoluminescence spectra of both neutral and charged excitons, which is a characteristic feature of single-layer MoS2 that has not been observed in multilayer MoS2. The results presented here open the door to fabrication of multilayered MoS2 samples with high optical absorption while maintaining the advantageous enhanced photoluminescence emission of single-layer MoS2 by controllably twisting the MoS2 layers.展开更多
Protein folding is regarded as a quantum transition between the torsion states of a polypeptide chain.According to the quantum theory of conformational dynamics,we propose the dynamical contact order(DCO) defined as a...Protein folding is regarded as a quantum transition between the torsion states of a polypeptide chain.According to the quantum theory of conformational dynamics,we propose the dynamical contact order(DCO) defined as a characteristic of the contact described by the moment of inertia and the torsion potential energy of the polypeptide chain between contact residues.Conse-quently,the protein folding rate can be quantitatively studied from the point of view of dynamics.By comparing theoretical calculations and experimental data on the folding rate of 80 proteins,we successfully validate the view that protein folding is a quantum conformational transition.We conclude that(i) a correlation between the protein folding rate and the contact inertial moment exists;(ii) multi-state protein folding can be regarded as a quantum conformational transition similar to that of two-state proteins but with an intermediate delay.We have estimated the order of magnitude of the time delay;(iii) folding can be classified into two types,exergonic and endergonic.Most of the two-state proteins with higher folding rate are exergonic and most of the multi-state proteins with low folding rate are endergonic.The folding speed limit is determined by exergonic folding.展开更多
Parameterizations that use mesh simplification to build the base domain always adopt the vertex removal scheme.This paper applies edge collapse to constructing the base domain instead.After inducing the parameterizati...Parameterizations that use mesh simplification to build the base domain always adopt the vertex removal scheme.This paper applies edge collapse to constructing the base domain instead.After inducing the parameterization of the original mesh over the base domain,new algorithms map the new vertices in the simplified mesh back to the original one according to the edge transition sequence to integrate the parameterization.We present a direct way,namely edge classification,to deduce the sequence.Experimental results show that the new parameterization features considerable saving in computing complexity and maintains smoothness.展开更多
Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins.Rec...Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins.Recently,other types of molecular constraints,especially photoresponsive linkers and functional groups,have also found increased use in a wide variety of applications.Herein,we provide a concise review of using various forms of molecular strategies to constrain proteins,thereby stabilizing their native states,gaining insight into their folding mechanisms,and/or providing a handle to trigger a conformational process of interest with light.The applications discussed here cover a wide range of topics,ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.展开更多
基金Supported by the National Natural Science Foundation of China(81373465)
文摘In recent years, increasingly evidences show that autophagy plays an important role in the pathogenesis and development of liver diseases, and the relationship between them has increasingly become a focus of concern. Autophagy refers to the process through which the impaired organelles, misfolded protein, and intruding microorganisms is degraded by lysosomes to maintain stability inside cells. This article states the effect of autophagy on liver diseases (hepatic fibrosis, fatty liver, viral hepatitis, and liver cancer), which aims to provide a new direction for the treatment of liver diseases.
文摘This paper shows that there are two different phases in economics. These are the primal and dual problems. In the primal problem phase, capital expenditures of private corporations grow, creating an impetus towards the maximization of profits. In this case, as Adam Smith once wrote, the "invisible hand of God" works to lead the economy to a significant growth. This paper defines the concept of economic growth, bubble economy and destruction of bubble economy. And this paper describes why bubble economy occurs and crashes. In the process, this paper shows that primal economy exists before bubble economy and dual economy exists after destruction of bubble economy.
文摘The Double Folding (DF) model calculation of the internuclear potential in heavy-ion interactions when the participant nuclei are deformed in their ground states involves a six-dimensional integral. Using the multipole expansion in these calculations, the DF six-dimensional integral reduce to the sum of the products of three single-dimensional integrals. In this paper we have presented a procedure for the calculation of the radius dependent functions in the multipole expansion of the nuclear density and their Fourier transforms. We have also reduced the DF model integrals to the sum of the single dimensional integrals using the obtained relations for the radius dependent functions in the multipole expansion and their Fourier transforms.
文摘Using molecular dynamics (MD) simulations, we have investigated the kinetics of the graphene edge folding process. The lower limit of the energy barrier is found to be -380 meV/A (or about 800 meV per edge atom) and -50 meV/A (or about 120 meV per edge atom) for folding the edges of intrinsic clean single-layer graphene (SLG) and double-layer graphene (DLG), respectively. However, the edge folding barriers can be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the two sides of graphene along the edges. Our studies indicate that thermal folding is not feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG and DLG edges can be spontaneous at RT. These findings suggest that the folded edge structures of suspended graphene observed in some experiments are possibly due to the presence of adsorbates at the edges.
文摘We study molybdenum disulfide (MoS2) structures generated by folding single-layer and bilayer MoS2 flakes. We find that this modified layer stacking leads to a decrease in the interlayer coupling and an enhancement of the photoluminescence emission yield. We additionally find that folded single-layer MoS2 structures show a contribution to photoluminescence spectra of both neutral and charged excitons, which is a characteristic feature of single-layer MoS2 that has not been observed in multilayer MoS2. The results presented here open the door to fabrication of multilayered MoS2 samples with high optical absorption while maintaining the advantageous enhanced photoluminescence emission of single-layer MoS2 by controllably twisting the MoS2 layers.
基金supported by the Distinguished Scientist Award of Inner Mongolia Autonomous Region(2008)a Major Project Fund of Inner Mongolia University of Technology(Grant No.ZD200917)a Project Fund of Inner Mongolia Natural Science(Grant No.2010BS0104)
文摘Protein folding is regarded as a quantum transition between the torsion states of a polypeptide chain.According to the quantum theory of conformational dynamics,we propose the dynamical contact order(DCO) defined as a characteristic of the contact described by the moment of inertia and the torsion potential energy of the polypeptide chain between contact residues.Conse-quently,the protein folding rate can be quantitatively studied from the point of view of dynamics.By comparing theoretical calculations and experimental data on the folding rate of 80 proteins,we successfully validate the view that protein folding is a quantum conformational transition.We conclude that(i) a correlation between the protein folding rate and the contact inertial moment exists;(ii) multi-state protein folding can be regarded as a quantum conformational transition similar to that of two-state proteins but with an intermediate delay.We have estimated the order of magnitude of the time delay;(iii) folding can be classified into two types,exergonic and endergonic.Most of the two-state proteins with higher folding rate are exergonic and most of the multi-state proteins with low folding rate are endergonic.The folding speed limit is determined by exergonic folding.
基金supported by the National Natural Science Foundation of China (Nos.60273060,60333010 and 60473106)the Research Fund for the Doctoral Program of Higher Education of China (No.20030335064)
文摘Parameterizations that use mesh simplification to build the base domain always adopt the vertex removal scheme.This paper applies edge collapse to constructing the base domain instead.After inducing the parameterization of the original mesh over the base domain,new algorithms map the new vertices in the simplified mesh back to the original one according to the edge transition sequence to integrate the parameterization.We present a direct way,namely edge classification,to deduce the sequence.Experimental results show that the new parameterization features considerable saving in computing complexity and maintains smoothness.
基金supported by the National Institutes of Health(GM-065978,AG-039253)
文摘Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins.Recently,other types of molecular constraints,especially photoresponsive linkers and functional groups,have also found increased use in a wide variety of applications.Herein,we provide a concise review of using various forms of molecular strategies to constrain proteins,thereby stabilizing their native states,gaining insight into their folding mechanisms,and/or providing a handle to trigger a conformational process of interest with light.The applications discussed here cover a wide range of topics,ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.