When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different ...When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different structures to be designed and fabricated.By employing the thermodynamic theory and research method proposed by Suo et al.,an equilibrium equation of folded dielectric elastomer actuator with two generalized coordinates is established.The governing equations of failure models involving electromechanical instability,zero electric field,electrical breakdown,loss of tension,and rupture by stretch are also derived.The allowable areas of folded dielectric elastomer actuators are described.These results could provide a powerful guidance to the design and performance evaluation of the dielectric elastomer actuators.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11225211,11272106,11102052)China Postdoctoral Science Foundation(Grant No.2012M520032)+1 种基金Heilongjiang Postdoctoral Fund(Grant No.LBH-Z12091)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2013030)
文摘When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different structures to be designed and fabricated.By employing the thermodynamic theory and research method proposed by Suo et al.,an equilibrium equation of folded dielectric elastomer actuator with two generalized coordinates is established.The governing equations of failure models involving electromechanical instability,zero electric field,electrical breakdown,loss of tension,and rupture by stretch are also derived.The allowable areas of folded dielectric elastomer actuators are described.These results could provide a powerful guidance to the design and performance evaluation of the dielectric elastomer actuators.